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Abstract

There is an arms race in the data management industry to support analytics applications
over large data. Recent systems from IBM, Oracle, and SAP enable one to run R scripts over
data stored in a data processing system. A key step in analytics applications is feature selection,
which is an iterative process that involves statistical algorithms and data manipulations. From
conversations with analysts at enterprise settings, we learned that feature selection is often
described using logical operations, e.g., adding or removing a feature, and evaluating a set of
features. But this level of abstraction for feature selection is not present in current R-based
data processing systems.

Building on the literature on feature selection in practice, we organize a set of common oper-
ations for feature selection and build a prototype usable in the Oracle R Enterprise environment.
We study two benefits of this level of abstraction for feature selection – performance optimiza-
tions and provenance tracking. We show how two classical database-style ideas – batching and
materialization – can improve the performance of feature selection operations significantly but
raise non-obvious tradeoffs. We formalize our optimizations and show that, while they are NP-
Hard in general, we can obtain optimal solutions efficiently in some cases that we observed in
real feature selection workloads. We empirically validate that our optimizations can improve
performance by over an order of magnitude on real feature selection workloads. We then show
how our framework enables us to easily track the provenance of feature selection processes and
validate that the runtime overhead for capturing provenance is less than 5% on the feature
selection workloads that we studied. We also discuss how we can reuse captured provenance to
further improve performance.

1 Introduction

Enterprise data analytics is a booming area of the data management industry. Many enterprise
applications use statistical methods, and such applications are increasingly using larger amounts of
data [5–7,13]. Consequently, there has been a massive push from the data management industry to
scale statistical computing languages such as R [10–12,26, 48], which is a familiar environment for
statistical analysts. Systems like Oracle R Enterprise [10], SystemML [26] and SAP’s R [12] scale the
low-level primitives of R (e.g., addition and multiplication of matrices) to larger data in platforms
such as RDBMS or Hadoop. The R-based systems also support routine data manipulations such as
relational-style selections and projections. However, enterprise analytics is an ecosystem of several
tasks and algorithms, often as an iterative process – the analytics lifecycle [13]. Naturally, the
vendors of R-based systems are beginning to add support for analytics tasks beyond just R scripts
or specific algorithms [10,26].
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We focus on one major task in the analytics lifecycle – selecting which features (also called
signals, attributes, or variables) of the dataset to use for statistical modeling – a problem known
as feature selection [31, 32]. Feature selection helps improve modeling accuracy, and also helps
an analyst understand the importance of the features in the data. The features that are selected
largely retain their meaning [30] – they typically represent real-world signals, e.g., income or age.
Various algorithms for feature selection have been proposed in the statistics and machine learning
literature [31,32].

However, from interacting with analysts in enterprise settings – an insurance firm (AmFam), a
consulting firm (Deloitte), an Oracle customer, and an e-commerce firm – we learned that feature
selection is often practised as a process that has the analyst in the loop. The analysts use feature
selection algorithms, data statistics, and data manipulations – “a dialogue” that is often specific
to the application domain [13]. Analysts often use domain-specific “cookbooks” that outline best
practices for feature selection [3, 14, 30]. Increasingly, analysts want to bring larger data into such
processes [7]. Recent R-based systems aim to tackle the need to manage larger data [10,12,26], but
our conversations with the analysts revealed a key problem: analysts describe feature selection at
the level of logical operations like adding or dropping features, filtering the data, evaluating features,
etc. However this level of abstraction for feature selection is not present in current R-based data
processing systems, resulting in two major issues:

• Performance: By being aware of the computational and data access properties of logical
operations, the system could better optimize its performance.

• Provenance: The analysts described how they have to manage information about the process –
its provenance (steps and intermediate results) manually with spreadsheets, and even emails,
thus scattering information that may have to be queried for business purposes.

We take a first step towards addressing the above two issues by using data management ideas.
Based on the literature on feature selection practice [3, 14, 30] and our interactions with the an-
alysts, we organize a set of common operations for feature selection into a framework that we
name Columbus . We categorize the operations in Columbus into three types based on their
role in the process – Explore, Evaluate, and Data-Transform. Explore operations steer feature se-
lection manually or using selection algorithms. Evaluate operations compute numeric scores over
the data. Data-Transform operations represent data manipulations, most of which are relational.
We prototype Columbus operations as first-class primitives usable in the Oracle R Enterprise
(ORE) [10] environment, with an R front-end and an RDBMS back-end.1 The datasets are rela-
tional tables with the features representing attributes. Analysts perform feature selection using a
sequence of Columbus operations, which constitute a feature selection program, also referred to
as a Columbus program. We then address the two issues:

• Performance: We study how two classical database-style performance optimization ideas –
batching, and materialization – impact feature selection programs. We formalize these two
optimizations in our framework and show that they can be solved efficiently in some cases
but are NP-Hard in general.

• Provenance: We discuss how our framework lets us easily manage the provenance of the fea-
ture selection process, and discuss how we can reuse captured results to improve performance.

1We also replicated our prototype with Python over PostgreSQL to show the portability of our framework.
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Performance Optimizations Our main technical contribution is to study the impact of batching
and materialization in optimizing the performance of feature selection programs. We observe two
key characteristics of feature selection programs that make them amenable to these two optimiza-
tions. First, multiple operations might scan the same dataset independently. For example, stepwise
selection, which is a popular feature selection operation [30], performs 10-fold cross-validation
on multiple sets of features (feature sets) by adding one feature at a time. When selecting one
out of 200 features, executing such an operation naively for, say, 5 training iterations, results in
200× 10× 5 = 10, 000 scans. Using batching, we can reduce the number of scans to 5. We formal-
ize batching as an optimization problem and show that we can solve the problem efficiently in a
common case where we have enough system memory to batch as many operations as needed. We
show that when the system memory constrains how much we can batch, our problem is NP-Hard.
Second, operations in feature selection programs might access only a few features from the dataset.
For example, an analyst might explore only a set of 50 features out of 200 in a dataset. Using
a materialized dataset with those 50 features projected might improve performance. But mate-
rialization presents a non-obvious tradeoff – the materialized projection is beneficial only if it is
used often enough to pay off the time to materialize. We thus formulate a cost-based optimization
problem to make materialization decisions using the costs of materializations and scans. We then
focus on a case that we found to arise in real feature selection workloads – the input consists of a
collection of feature sets that form a chain, i.e., the feature sets form a sequence where a feature set
is contained in the previous one and contains the next. We present a dynamic-program to solve the
problem efficiently for chains. We then analyze our problem formally and show that it is NP-Hard
in more general settings.

Provenance Contributions Based on conversations with analysts, we identify two benefits of
provenance in the feature selection process: (1) to enable oversight of the analysis process, which
may be required for legal reasons, e.g., to make sure discriminatory features are not used during
the insurance process, or for deeper understanding of how and what data is used, and (2) to reuse
results to improve performance of Columbus programs. Our approach combines existing models
of workflow and data provenance [17, 19, 34]. Our proposed system captures provenance at two
granularities – coarse, where only the inputs and outputs of Columbus operations are captured,
and fine, where the internal details of operations are captured as well. Empirically, we find that even
for fine granularity capture, the runtime overhead is within 5% on real feature selection workloads.
Not surprisingly, we also find that reusing results can speed up feature selection programs by orders
of magnitude.

Contributions We make the following contributions:

• We take a first step towards managing the process of feature selection over data analytics
systems. We organize a common set of operations for feature selection into a framework and
prototype our ideas over the Oracle R environment and Python over PostgreSQL.

• We study the impact of two classical performance optimizations – batching and materializa-
tion. We formalize these optimizations in our framework and show that they can be solved
efficiently in some common cases but are NP-Hard in general.

• We show two benefits of provenance in feature selection – enabling oversight and reuse of
captured results for performance. We discuss the design space for granularity of provenance
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capture in feature selection.

Based on our interactions with the analysts as well as Guyon and Elisseeff’s popular reference
on feature selection practice [30, 31], we write Columbus programs and empirically validate our
contributions using real and synthetic datasets. Our performance optimizations yield speedups
ranging from about 2x to 20x on these programs. We then validate our optimizations individually
in detail. We show that the overhead to capture provenance is less than 5% for these programs and
describe two uses for captured results.

Outline The rest of the paper is organized as follows: in Section 2, we present a motivating
case study and our framework of operations. In Section 3, we discuss our system architecture and
performance optimizations. In Section 4, we discuss how we manage provenance and reuse results.
In Section 5, we empirically validate our performance optimizations, and provenance management.
We discuss related work in Section 6, and conclude in Section 7.

2 Motivation and Preliminaries

We present a case study about a feature selection process based on our discussions with actuaries
at a major insurance firm, American Family Insurance (AmFam).

2.1 Case Study: Insurance Risk Pricing

A common analytics task in the insurance domain is determining the risk of a customer in order
to decide insurance pricing rates. We are collaborating with AmFam to explore the role of newer
data sources in designing better insurance policies. The datasets here typically have a few hundred
features from various sources (e.g., customer details and census records). Through our conversa-
tions, we learned how analysts explore the importance of each feature and decide what features to
use for statistical modeling.

Analysts often use domain-specific methods for feature selection. One method they use is to
split and analyze the features in separate groups (e.g., customer features and car features). They
obtain descriptive statistics like correlations among features, manually choose some features, and
evaluate the feature sets. Simple algorithms like stepwise selection [30–32] and Lasso are also
commonly used. In between the exploration, the dataset is also filtered on features like income to
focus on specific customer segments. Thus, overall, they use their insights, data manipulations,
descriptive statistics, and a few popular selection algorithms. To get more accurate insights, they
are looking to bring in larger datasets into such analyses, but are concerned about poor performance
at scale. Higher performance on larger data can improve the turnaround times for their analyses
and contribute to more informed business decisions. Also, they often have to manually manage
information about the steps and results using ad-hoc notes and emails. Such information is needed
to improve their analyses and to communicate their results for presentation and auditing purposes.

Discussion We also spoke to analysts in other enterprise settings – a consulting company (De-
loitte), an Oracle customer, and data scientists at an e-commerce company. We found similar
processes and issues for feature selection faced by the analysts. Our goal is to take a step to-
wards managing the process of feature selection to address the two issues of performance and
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High-level Task Example Opera-
tions

Descriptive statistics Mean, Variance, Cor-
relation, Covariance

Train and score models Linear and Logistic
Regression, Cross-
Validation

Automatic selection Forward and Back-
ward Selection, Lasso

Semi-automatic selec-
tion

Stepwise Add and
Drop

Manually choose fea-
tures

Insert, Remove, Com-
bine, Create new fea-
tures

Data manipulations Select, Project, Join

Table 1: Common high-level tasks and example operations in feature selection, based on Guyon
and Elisseeff [30], other literature [3, 14], and our interactions with analysts.

provenance. Based on our interactions with the analysts and the literature on feature selection
practice [3, 14, 30] (see Table 1), we organize a set of common operations for feature selection into
the Columbus framework. We categorize the operations in Columbus into three types – Explore,
Evaluate, and Data-Transform. We will explain in detail shortly, but we start with an example
based on our case study (see Figure 1).

Example An analyst runs Columbus operations wrapped as R functions to explore a U.S.
Census dataset, which has demographic, economic, and other groups of features. A binary target
feature in the dataset asks if a majority of a census block’s inhabitants reply to census mails. She
assesses groups of features and uses correlations to check for feature redundancies (an Evaluate
operation CorrelationX), performs model evaluations (an Evaluate operation EvaluateLRCV that
does cross-validation of logistic regression), selects smaller customer segments (a Data-Transform
operation Select), combines features (an Explore operation Union), and runs some selection algo-
rithms (an Explore operation StepAdd). She copies the printed results to text files to discuss with
others and validates the results of these operations against a larger dataset. Our focus is on the
two issues of performance over large data and provenance management for such feature selection
programs:

• Performance: We study how two classical database-style performance optimizations ideas
can improve performance over large data. Empirically, we show that our optimizations can
yield up to 20x speedups.

• Provenance: We capture the provenance of such processes and show that the runtime overhead
is less than 5% and needs less than 100kB of storage space.
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1. d1 = Dataset(c(“USCensus”)) #Register the dataset
#—s1 represents population-related features—#

2. s1 = FeatureSet(c(“Population”,“NumHouses”, . . . ))
3. l1 = CorrelationX(s1, d1) #Get mutual correlations
4. Remove(s1, “NumHouses”) #Drop this feature
5. l2 = EvaluateLRCV(s1, d1) #Evaluate this set

#—Focus on high-income areas—
6. d2 = Select(d1,“MedianIncome >= 100000”)

#—s2 represents economic features—
7. s2 = FeatureSet(c(“AvgIncome”,“MedianIncome”,. . . ))
8. l3 = EvaluateLRCV(s2, d2)
9. s3 = Union(s1, s2) #Use both sets of features

#—Add in one other feature—
11. s4 = StepAdd(1, s3, d1)
12. Final(s4) #Session ends with chosen features

Figure 1: Example snippet of a Columbus program with logical operations wrapped as functions
usable in R/ORE.

2.2 Operations in COLUMBUS

We start with some definitions. A feature, f , is a semantic signal drawn from some domain,
denoted dom(f). Example features include customer age, county population, etc. The domain of
discourse, F , is a user-given global set of uniquely-identifiable features {f1, f2, . . . , fn}, each with
its own domain. The Feature Lattice on F is the transitive reduction of the partially ordered set
(2F ,⊆). A feature set is an abstract data type to represent a set of features from the Feature
Lattice, i.e., F ⊆ F . A dataset is a relation R(ID, f1, . . . , fm), whose attributes form a feature
set, {f1, . . . , fm} ⊆ F . The ID is a distinguished key attribute. A feature set S ⊆ F is feature
compatible with a dataset R(ID, f1, . . . , fm) if and only if S ⊆ {f1, . . . , fm}. We also use the
notation R(F) to denote R(ID, f1, . . . , fn), assuming the ID implicitly.

Table 2 summarizes the three categories of operations in Columbus – Explore operations
that traverse the Feature Lattice; Evaluate operations that score feature sets over the dataset; and
standard Data-Transform operations that manipulate a dataset. Our contribution is not in defining
these operations – they are already used by analysts [3,4,14,30]. However, our framework helps us
tackle the two issues of performance optimizations and provenance tracking.

Explore Operations These operations enable an analyst to traverse the Feature Lattice by
manipulating feature sets. We categorize them into three types – FeatureSetOps, AutomaticOps,
and SemiAutomaticOps. FeatureSetOps are changes to feature sets that help an analyst steer the
selection by manually adding or removing features. AutomaticOps are popular feature selection
algorithms, which when given a feature set and a feature-compatible dataset, output another feature
set. We currently consider some popular search-based algorithms like Forward and Backward
selection, as well as Lasso for regression. SemiAutomaticOps are similar to AutomaticOps, but
give the analyst more control. We consider Stepwise selection that can add or drop a feature one
at a time based on computations over the data.
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Type Examples Inputs Outputs

Explore
FeatureSetOps Fi, Fj Fo

AutomaticOps,
SemiAutomati-
cOps

Ri, Fi Fo

Evaluate DescriptiveStatsOps,
LearnerOps,
ScorerOps

Ri, Fi D(F, V )

Data-
Transform

SPJUAQuery,
Sort, Shuffle,
Create

Ri[, Rj ] Ro

Table 2: Categorization of our operations in Columbus . All Fi are feature sets (⊆ F), while all
Ri are datasets (relations). D(F, V ) is a two-attribute relation wherein F is of type feature set and
V is a real number.

Evaluate Operations These operations obtain various numeric scores for a feature set. We
categorize them into three types – DescriptiveStatsOps, LearnerOps, and ScorerOps. DescriptiveS-
tatsOps include descriptive statistics of the data, e.g., mean and variance, which take a single feature
as input, and correlation and covariance, which need a pair of features. LearnerOps are a class of
machine learning algorithms that compute coefficients or weights over features. This class is large,
and we currently consider a few popular convex models like logistic regression, linear regression,
and others that fit into the aggregation-based abstraction described by Feng et al [23]. ScorerOps
score learned models over the data. We currently support prediction error, cross-validation error
(e.g., of logistic regression), and Akaike Information Criterion (AIC) [30].

Data-Transform Operations These operations are common data manipulations performed by
analysts to slice and dice the dataset. Recent R-based systems that have an RDBMS backend [10,48]
also identify that such operations are relational and exploit the RDBMS optimizer to improve per-
formance. Other operations include sort and shuffle, as well as simple functional transformations
on features, e.g., squares and products of features.2 Such functional transformations are managed
as logical views.

Overall, our framework currently has 7 Explore, 7 Evaluate, and 4 Data-Transform operations.
More details are available in our technical report [2]. Our framework is not intended to be com-
prehensive, but serves as a starting point since it already helps us capture real feature selection
workloads that we found from our discussions with the analysts and in the literature on feature se-
lection practice. We now discuss how we handle Columbus programs and discuss our performance
optimizations.

2For simplicity of exposition, we assume the features of the dataset are numeric.
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Figure 2: (A) High-level architecture of our system to implement Columbus . (B) Illustration of
the end-to-end treatment of a Columbus program in our system. In the Columbus program,
s1, s2, {f15}, etc. are feature sets.

3 Performance in COLUMBUS

We now discuss how we prototype the abstract Columbus framework to be usable in the ORE
environment [10]. We explain the data access patterns of Columbus operations and mention how
we can leverage existing optimizations. We then study how to apply batching and materialization
optimizations to Columbus programs.

3.1 System Overview

Our system architecture (Figure 2(A)) is based on existing R-based systems [10,26,48]. There are
four major components: Translator, Optimizer, Executor, and Provenance Manager. The datasets
reside on a Data Platform (we use an RDBMS), which is transparent to the R user [10,48]. Our novel
contributions are in the performance optimizations of our Optimizer and Provenance Manager. We
prototyped Columbus as a library usable in an R (as well as Python) front-end for an RDBMS
back-end.

Usage Settings and Examples We consider both interactive and full-program usage settings
of Columbus programs. In the interactive setting, an analyst runs each instruction of a program
(e.g., Figure 1) one by one. In the full-program setting, she provides the full program to the system
at once. Columbus programs are sequences of Columbus operations, with FeatureSetOps (e.g.,
Union) introducing control dependencies among operations. Executing the instructions sequentially
in the full-program setting could lead to loss of opportunities to optimize performance.

We now discuss how our system executes a Columbus program with an end-to-end example
(Figure 2(B)). The Translator converts the program into a directed-acyclic graph (DAG) of in-
structions and performs static analysis to obtain a DAG of Columbus operations that access the
datasets (data-aware operations, e.g., 3, and 5 in Figure 1). The Translator then decomposes the
data-aware Columbus operations into workflows of atomic operations, which have data access
patterns supported by the data platform (more details shortly). The Optimizer optimizes data
accesses using our batching and materialization optimizations, and reusing optimizations in the
RDBMS. It outputs job descriptions, e.g., perform a scan-based aggregation, or materialize a pro-
jection. The Executor converts the jobs output by the Optimizer into the data platform’s language
(e.g., SQL queries over in-RDBMS data) and obtains the results.
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Figure 3: Decomposition of Columbus operations into workflows of atomic operations that touch
the dataset. (A) CoefficientLR (B) EvaluateLRCV (C) StepAdd. Notation: σ: relational Select,
π: Project, L: Learner, S: Scorer; LR and CV represent workflows.

Atomic Op. Data-
Accesses

Optimized
By

Learner Scan
Columbus
Optimizer

Scorer Scan
SufficientStats Scan

Select Scan, Index
Both

Project Scan

Sort & Shuf-
fle

Sort RDBMS
Optimizer

Product &
Join

Several

Table 3: Atomic Operations and data access properties. The Columbus Optimizer applies batch-
ing and materialization to optimize the scan-based atomic operations Learner, Scorer, and Suffi-
cientStats as well as Select and Project that arise in Explore and Evaluate operations.

Atomic Operations and Data Accesses R-based systems like ORE translate operations on
the primitives of R (e.g., selections on R data frames) into primitives supported by an RDBMS
(e.g., relational Select) and reuse optimizations in the RDBMS [10, 12, 48]. Similarly, our Transla-
tor converts Columbus operations (e.g., EvaluateLRCV) into workflows of primitives, or atomic
operations, whose data access patterns are supported by the RDBMS (or other platforms). Thus,
we can reuse existing optimizations for relational operations, and study new optimizations for other
operations. We start by illustrating the decomposition of data-aware Columbus operations into
atomic operations:

Example 3.1. Figure 3 shows the decomposition of three operations – CoefficientLR, EvaluateL-
RCV, and StepAdd. CoefficientLR (logistic regression) is a sequence of atomic Learners that are
aggregations (scans). EvaluateLRCV (cross-validation of logistic regression) shuffles the data (sam-
pling without replacement [23])3, partitions it (selections), runs CoefficientLR on each partition,
runs atomic prediction error scorers (scans), and averages the scores. StepAdd is a search-based
selection algorithm that takes steps through the Lattice to add one feature. It runs EvaluateLRCV
(or AIC) on multiple feature sets, and picks the best set [31].

3In our system, we assume that the dataset is shuffled once a priori and used for the full program.
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Table 3 lists our atomic operations. Three atomic operations arise from Explore and Evalu-
ate operations – Learner, Scorer, and SufficientStats. Each of these three is an aggregation that
performs one scan of the dataset.4

Our focus is on applying performance optimizations across our atomic operations. As in ex-
isting systems [10,48], we use the RDBMS to optimize relational operations. Our Data-Transform
operations represent SQL queries that can exploit the RDBMS query optimizer. We then observe
two key properties of feature selection workflows – (1) multiple operations often scan the same
dataset (or roughly the same) independently, and (2) operations often access only a few features
by projecting the dataset (Figure 3). We study how we can exploit these two properties to improve
the performance of feature selection programs on large data. We apply two classical database-style
performance optimization ideas – (1) batching of scan-based data accesses, and (2) materialization
of intermediate dataset projections. To the best of our knowledge, these optimizations have not
been studied in depth before for feature selection processes.

3.2 Performance Optimizations

We now discuss how we apply batching and materialization optimizations to Columbus programs.
Our focus is on optimizing the data access of a given set of Columbus operations that have all
their inputs (input feature sets and number of iterations) available. So we can obtain a workflow
of atomic operations. If some operations depend on earlier ones for feature set inputs (e.g., node 8
in Figure 2(B)), the set of operations that occur later are optimized after their feature set inputs
have been resolved at runtime .

4They are also algebraic aggregations [27]. Thus, it is possible to use our optimizations in data-parallel settings
such as a parallel RDBMS and Hadoop-based systems as well.

10



3.2.1 Batching Optimization

Batching improves performance by juxtaposing the aggregation states of the independent scans
and enabling them to share the same scan. For example, Figure 3(B) shows EvaluateLRCV running
k (as in k-Fold) Learners independently, with a total of kN scans (N is the number of training
iterations). Batching reduces the number of scans to N .5 Operations that search on the Feature
Lattice (e.g., StepAdd in Figure 3(C)) also benefit from batching. We also apply batching across
all our scan-based operations in a Columbus program (illustrated in Figure 2(B)).

We now formally state the batching problem. We are given a DAG G(V,E), where V is a set of
scans of the dataset, and E represents dependencies among scans. E imposes a partial order ≤ on
V . We want to convert G into a sequence G′(V ′, E′), where each element of V ′ is a batch of scans
from V obtained using a surjection f : V → V ′. E′ imposes a total order ≤E′ on V ′, and preserves
the partial orders in G, i.e., ∀u, v ∈ V, u ≤ v =⇒ f(u) ≤E′ f(v). The goal is to obtain such a G′

with minimum |V ′|.
We use the following algorithm to obtain such a mapping f – sort G topologically, go over v ∈ V

in increasing topological order, and assign it to the minimum possible v′ ∈ V ′ that preserves the
partial orders in G. The minimum possible |V ′| is the height of the partial order on G, and our
algorithm obtains such a V ′ in time O(|V |+ |E|). The number of scans is reduced from |V | to the
height of the partial order on G (illustrated in Figure 4(A)). Since a scan includes not just I/O
costs, but also auxiliary overheads like parsing and function calls, batching can save time even in
the interactive setting when the dataset fits in memory.

As an extension, we also formulated batching with computation costs considered. But em-
pirically, we found this formulation’s result to be less than 20% faster on real feature selection
programs than our algorithm above. Since the improvement is low, we do not use this formulation
for batching. We also show that batching is NP-Hard in a setting in which the system memory
is a constraint (i.e., the sum of the aggregation states exceeds the available memory). The proof
uses a reduction from the BinPacking problem, and we can adopt a standard first-fit heuristic to
solve our problem [24]. We do not focus on these extensions here, and present more details in our
technical report [2].

3.2.2 Materialization Optimization

We start by motivating why we need a cost-based approach to optimize the materialization of
projections in feature selection programs. We are given a dataset R(F) and an operation (e.g.,
CoefficientLR) with an input feature set F ⊆ F . Let scanning R(F) take s units of time.
Assuming all features have equal size in a dataset, scanning the materialization of F (i.e., the
projected dataset πF (R)6) takes only s|F |/|F| units. Let the time to materialize F be m units,
and suppose the operation performs N scans (e.g., the number of iterations in CoefficientLR).
So materializing F is beneficial only if Ns > m + Ns|F |/|F|. Thus, we design a cost-based
optimizer that considers costs of scans, materializations, computations, and memory. For simplicity
of exposition, we use only scan and materialization costs here. More details are in our technical
report [2]

5The partition of the dataset needed for k-Folds is done using a modulo on the serial keys (IDs) of the tuples.
6The ID attribute in R is implicitly retained in πF (R)
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Algorithm 1: Dynamic Pro-
gram

//i > 0, use original dataset
T (i, 0) = r(Fi) Read(F) + T (i−
1, 0)

//i > j > 0, use the last
materialization
T (i, j) = r(Fi) Read(Fj) + T (i−
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diagonal
T (i, i)
= minj=1...i−1 (Store(Fj , Fi) +

T (i−
1, j)) + r(Fi) Read(Fi)

Figure 4: Performance optimizations: (A) Example with two iterative scan-based operations, with
input feature sets F1 and F2. Batching removes 2 scans and yields 2 distinct feature set accesses,
F ′1 = F1 ∪ F2 and F ′2 = F2, with repetitions r(F ′1) = 2 and r(F ′2) = 5. (B) Note that F ′1 ⊇ F ′2. F ′2
is accessed sufficiently often, and so we materialize F ′2 as a projection of the dataset relation R.
Algorithm 1: Dynamic program to decide which feature set accesses to materialize.

Read(F ) =

{
O(|F |), if size(πFR(F)) > M
0, otherwise

Write(F ) =

{
O(|F |), if size(πFR(F)) > M
0, otherwise

Store(F1, F2) = Read(F1) + Write(F2)

Table 4: I/O costs for materialization optimization given a dataset R(F). F, F1, F2 ⊆ F are feature
sets. size(πFR(F)) is the table size of the materialization of F . M is the size of buffer memory.

Cost Model Given a dataset R(F) with a full set of features F . Given F ⊆ F , the cost
of scanning πF (R(F)) is denoted Read(F ). The cost of materializing F using R(F) is denoted
Store(F , F ) – it involves scanning R(F) and writing πF (R(F)).7 We can also materialize F using
a materialized projection πF ′(R(F)), if F ⊆ F ′, whence the cost is Store(F ′, F ). Table 4 shows our
cost model in terms of only I/O costs (for simplicity of exposition). Our model accounts for both
the case when a projected dataset needs to reside on disk and when it can fit in buffer memory.

We now motivate a common scenario for the materialization problem that builds upon our
batching optimization. Recall that our batching algorithm produces a sequence of scans, each of
which accesses a feature set that is the union of the input feature sets of the scans that were
batched. Thus, successive scans only access the same feature set or smaller (see Figure 4(B)). In
other terms, suppose we have two successive scans with respective input feature sets F1 and F2,
then F1 ⊇ F2. So, if πF1(R) is materialized, it can potentially be used for both scans. We now

7For any F ⊆ F , Store(F, F ) = 0.
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formally state our materialization optimization problem.

Problem Statement Fix dataset R(F). We are given a set of accesses of subsets of F , la-
beled S = {F1, . . . , FN}, where Fi ⊆ F , ∀i = 1 . . . N . The subsets are accessed with repetitions
{r(Fi)}Ni=1, i.e., Fj is accessed r(Fj) times. A materialization plan is a subset S ′ ⊆ S whose feature
sets are materialized and used for data accesses. We want to obtain a materialization plan with
minimum cost. We formulate it as an optimization problem:

MatOpt: minS′⊆S Cost(S ′),

where Cost(S ′) =
∑
F∈S′

min
F ′∈S′∪{F}\{F}: F ′⊇F

Store(F ′, F )

+
∑
F∈S

r(F ) min
F ′∈S′∪{F}: F ′⊇F

Read(F ′)

In other words, we materialize the feature sets in S ′ and use the “thinnest” among them (or
R(F)) to serve each feature set. Our focus is on MatOpt when S is a chain with respect to set
containment, i.e., F ⊇ F1 ⊇ F2 · · · ⊇ FN . Apart from the output of our batching optimization,
the chain property can also arise in other feature selection scenarios, for example, during stepwise
search on the Feature Lattice. We now present an algorithm to obtain an optimal solution to
MatOpt efficiently for chains. Our idea is to exploit the fact that we will only use the thinnest
feature-compatible materialized dataset to serve each feature set. Thus, we explore the space of
materialization choices from F1 up to FN incrementally and track the best decisions using a dynamic
programming-style approach.

Dynamic Program We obtain S∗ using a dynamic program that computes cumulative costs
of materializations recursively (Algorithm 1). We define a cost T (i, j) as follows: we count the
cumulative cost of the best materialization plan up to “slot” i, counting from slots 1 to N (slot i
corresponds to the plan to serve feature sets F1, . . . , Fi). The entry j represents the slot at which
the latest materialization was done, i.e., Fj was materialized. Thus, fixing j, we will use πFj (R) to
serve feature sets Fk, k > j. The entries on the diagonal (i.e., i = j) count the cost of materializing
Fi and serving Fi using πFi(R). The costs are memoized using an N × N memo. We obtain the
optimal plan at slot N (i.e., serving up to FN ). The lowest cost S∗ is obtained by maintaining
backpointers in the memo.

Theorem 3.1. Algorithm 1 solves MatOpt for chains in time O(N2) with space O(N2).

3.2.3 Extensions and Further Analyses

We now analyze more general settings for MatOpt and explain some theoretical challenges that
arise.

Constant-width Lattice We first consider a generalizations of chains when S is a lattice of a
constant width. More precisely, S = {F (i, j)|1 ≤ i ≤ N, 1 ≤ j ≤ k}, where k is a given constant.
We are also given F (i, j1) ⊇ F (i + 1, j2),∀i ≥ 1,∀j1, j2. We can extend Algorithm 1 to have k
entries per slot in the memo and recurse over all k. We show that computing an optimal is in time
polynomial in N , but exponential in the constant k.
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Theorem 3.2. MatOpt for constant-width lattices can be solved in time O(k22kNk+1) with space
O(Nk+1).

General Lattice The above analysis hints that the width of the lattice affects the hardness of
MatOpt. In fact, we can show that, unless P = NP, no fully polynomial time algorithm can solve
MatOpt.

Theorem 3.3. MatOpt is NP-Hard in the width of the lattice on S.

Our proof uses a reduction from the NP-Hard problem SetCover [24]. Note that our batching
optimization mitigates this issue by constructing chains of input feature sets as input to MatOpt
(i.e., width k = 1, and thus O(N2)).

We give more detailed analyses and proofs in our technical report [2]. We also analyze our
problem in other general scenarios. One scenario we discuss in more detail is online optimization,
when not all repetitions are known a priori (say, due to data-dependent number of iterations).
We discuss an online algorithm that decides materializations dynamically when the repetitions are
unknown, and guarantees a 2-approximation to the optimum.

4 Provenance in Columbus

We describe why we capture provenance of the feature selection process in Columbus , and briefly
describe the design space and implementation details.

4.1 Uses of Provenance in Columbus

In Columbus , we capture provenance for two principal reasons: (1) to enable oversight of the
analysis process and (2) to enable reuse of results to improve performance.

Oversight Provenance can be used for simple governance and deeper analysis. For instance, in
insurance, an analyst cannot use discriminatory features, but exactly what features are considered
discriminatory differs between jurisdictions. For example, credit score is considered discriminatory
in California, but not in Wisconsin. Thus, existing commercial analytics systems already capture
such governance information for auditing purposes [9, 13].

From our conversations with analysts, we learned that analysts and their managers often want
to query more detailed information about the feature selection process. One kind of query deals
with the inputs and outputs of feature selection operations to compare results. For example,
“Which feature set evaluated has the lowest cross-validation error?” and “Which feature pairs
have correlation greater than 0.7?” Another kind of queries probe the internals of feature selection
operations to understand the results more deeply. For example, “Which feature sets were visited
by stepwise selection?” and “Was a given feature used by any operation?” Such provenance
information is often managed manually, e.g., in emails, spreadsheets and handwritten notes, which
makes it difficult to query. A goal of Columbus is to automate the capture of provenance for this
information.
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Reuse of Results We also observed that during a feature selection process, computations might
be repeated (even by the same analysis). For example, an analyst might repeat an operation dur-
ing her exploration or an operation might have been executed as part of another operation (e.g.,
EvaluateLRCV as part of StepAdd as in Figure 3(C)). By capturing the results of Columbus op-
erations, we can detect opportunities to reuse results to improve performance.

4.2 Coarse and Fine Provenance in Columbus

Columbus builds on existing models of workflow and data provenance [17, 19, 34]. Specifically,
we capture workflow provenance of Explore and Evaluate operations at multiple granularities. We
explore two extreme granularities in our prototype: (1) a coarse granularity, in which we capture
only the inputs and outputs of individual operations and (2) a fine granularity, in which we capture
internal details of Explore and Evaluate operations. For example, at the coarse granularity, we store
only the inputs and outputs (e.g., feature sets) of a StepAdd. At the fine granularity, we capture
the inputs and outputs of the operations that constitute a StepAdd, namely EvaluateLRCV and
CoefficientLR as well (e.g., the coefficents and scores obtained as in Figure 3(C)). Capturing
coarse granularity of provenance enables queries over the inputs and outputs. Fine granularity
enables queries over the internals of Columbus operations, but potentially at a higher runtime
and storage overhead. For example, a StepAdd might explore a large number of feature sets, all of
which need to be captured in the fine granularity setting. However, the fine granularity setting also
enables more opportunities for reuse than the coarse setting. We use the fine granularity setting
as the default, but let an analyst choose the granularity of provenance capture for her application.

Detecting Reuse Opportunities To detect opportunities for reuse of results, we represent a
Columbus program as an expression tree of operations. We perform subexpression matching to
find syntactic matches for expressions with only Explore and Evaluate operations. Our approach
of subexpression matching is sound, but not complete. That is, we only find correct reuse oppor-
tunities, but we may miss some logically equivalent reuse opportunities. This design decision was
motivated by the following three factors: (1) our operations are functional, i.e., given the same
input, they produce the same output, (2) subexpression matching captures the common cases of
reuse opportunities that we observed in real feature selection workloads, and (3) our data expres-
sions (Data-Transform operations) are arbitrary SQL queries (with bag semantics) and aggregation.
For such queries, deeper containment relationships are still theoretically open questions [36]. After
detecting reuse opportunities, we perform subexpression elimination and send the reduced Colum-
bus program to the Optimizer.

5 Experiments

We present an empirical evaluation of our contributions on real feature selection processes and
datasets. We validate that our performance optimizations are able to achieve significant speedups
on various scales of datasets. We then measure the overhead and the benefits of provenance in
answering queries without recomputations.
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Dataset Features Tuples Size

FordDrivers 30 604K 143MB

USCensus 161 109K 134MB

SynFord 30 35M-70M 8GB-16GB

SynCensus 161 7M-14M 8GB-16GB

Table 5: Dataset Statistics.

Datasets and Tasks We use two publicly available datasets, FordDrivers and USCensus, from
the Kaggle Competition website.8 USCensus is a dataset for the task of predicting mail respon-
siveness of people in different Census blocks. FordDrivers is a dataset from Ford for predicting the
alertness of a car’s driver. Both tasks are modeled as binary classification problems. We chose
these datasets since they are public but are still representative of the datasets that we found to be
typical at AmFam and other enterprise settings, namely, data with dozens to hundreds of features.
Each feature has a semantic interpretation that an analyst uses in the feature selection process.
In order to measure the impact of our performance optimizations on larger data, we synthesize
larger datasets that maintain the schema of the above two datasets. Table 5 presents the dataset
statistics.

Columbus Programs We write four Columbus programs based on our interactions with
analysts at AmFam and the literature on feature selection practice [30]. We capture two different
kinds of feature selection workloads – the first involves the analyst controlling the feature selection
process using her domain knowledge and hence, fewer selection algorithms. The second involves
more usage of selection algorithms. Specifically, programs Ford1 (on FordDrivers) and Cens1 (on
USCensus), which represent the first kind, split the features into 3 groups, and analyze each group
separately using more Evaluate operations (specifically EvaluateLRCV). Ford2 and Cens2 use more
Explore operations (specifically StepDrop). We present statistics about the programs in Table 6,
but due to space constraints, list the full programs in our technical report [2]. Since Ford1 and
Cens1 access independent groups of features, they have up to 60 independent data accesses and
almost no dependencies across operations. Ford2 and Cens2 first select less than one-fifth of the
features automatically and then reduce the feature set sizes using StepDrop. Hence, these two have
only up to 20 independent data accesses, but have several iterations accessing less than one-fifth
(and up to just one-tenth) of the features.

Experimental Setup All our experiments are run on an identical configuration: machines with
AMD Opteron 2212 HE CPUs (4 cores), 8GB of RAM, and 200GB disk. The kernel is Linux
2.6.18-238.12.1.el5. Each runtime reported is the average of three warm-cache runs. Our prototype
over ORE uses Java user-defined functions to implement our atomic scan-based operations, while
our prototype over PostgreSQL uses C user-defined functions. Our focus is on measuring the
relative performance gains achieved by our optimizations. Our results do not reflect the absolute
performance of ORE. Thus, we use XDB and YDB to refer to our prototypes anonymously in the
results.

8http://www.kaggle.com
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Program Ford1 Ford2 Cens1Cens2

# Evaluate Ops 10 3 10 3

# FeatureSetOps 14 9 17 9

# Other Explore
Ops

2 4 1 4

Total # Instruc-
tions

26 16 28 16

Table 6: Program Statistics: Evaluate operations include DescriptiveStatsOps, CoefficientLR,
and EvaluateLRCV. FeatureSet operations are manual and do not touch the dataset. Other Explore
operations here are automatic and stepwise selection algorithms.

5.1 End-to-End Overview

We first present end-to-end overviews of executing our programs. Due to space constraints, we only
discuss Ford1 and then Cens2 here. We found similar results on the other programs and present
them in the technical report [2].

Interactive Setting Figure 5 shows the total runtimes of instructions in Ford1. The two strate-
gies compared are: naive execution without any optimizations (NoOpt) and applying the batching
optimization (BatOpt). The data fits in memory here, and so we only consider batching within
each Columbus operation. We expect to see minor speedups since I/O is not involved.
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Figure 5: Overview of the interactive setting for Ford1 on the Ford dataset on both systems. NoOpt
is the case of naive execution without any batch optimizations, and BatOpt is when batching
is performed (for EvaluateLRCV, StepAdd, and StepDrop). (A) Breakup of total runtime into
individual classes of operations. (B) CDF of per-instruction runtimes.

Batching speeds up Ford1 by 2x in both systems. The runtime is dominated by EvaluateLRCV

and stepwise selection (StepAdd and StepDrop), and these operations are sped up by batching since
data access overheads like parsing and function calls are reduced. The CDF of per-operation run-
times shows that over half the operations in Ford1 finish in under 1s – these are the FeatureSetOps
that do not access the dataset.

Full-Program Setting Scalability We now study the impact of our optimizations across full
programs on larger data scales, where the I/O becomes significant. We plot the runtimes of Ford1
and Cens2 against the dataset size for three settings – NoOpt, BatOpt, and with our materialization
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Figure 6: Full-program setting: (A) Ford1 (B) Cens2 on both systems as the dataset size is scaled
up. NoOpt is naive execution, BatOpt applies batching, and BatMatOpt applies both batching and
materialization optimizations. The speedups achieved by BatOpt and BatMatOpt against NoOpt
are also shown.

optimization applied after batching (BatMatOpt). Since Ford1 has many independent accesses to
the dataset but accesses most of the features, we expect significant savings primarily from batching
alone. But since Cens2 has dependencies across operations and accesses fewer features, we expect
that the materialization optimization will also result in significant savings in addition to batching.
Figure 14 shows the results (we observe similar results for the other two programs).

We see that overall, our optimizations improve performance across the board. Batching alone
yields speedups of up to 7x on Ford1, since it saves scans both within and across Columbus op-
erations. The speedups in PyPG are lower for smaller datasets because the relative cost of I/O
against computation is lower since the RDBMS caches larger portions of the datasets. On ROra,
the speedups vary less since non-I/O data access overheads dominate the runtime. In addition
to batching, performing our materialization optimization increases the speedups to 9x on PyPG.
However, the savings on ROra are smaller since non-I/O data access overheads dominate scan
savings. On Cens2, we see that batching alone yields 11x speedups on PyPG on 8x on ROra.
However, since Cens2 has more repeated accesses of small feature sets, using materialization opti-
mization in addition to batching improves the speedup on both systems. The speedup is up to 22x
on PyPG and 12x on ROra. Overall, we see that there are scenarios in such programs where our
optimzations can yield speedups of over an order of magnitude. We now perform a detailed study
of our performance optimizations to evaluate their impact more precisely.

5.2 Performance Optimizations in Detail

We now study our performance optimizations in detail using a synthetic dataset SynFord (70M
rows, 16GB). We observed similar results on the other synthetic datasets and skip their results
here due to space constraints.

Batching Optimization First, we study the impact of the batching optimization by validating
that batching can speed up EvaluateLRCV. The number of folds is set to 10. We measure the run-
time of one training iteration of EvaluateLRCV without any batching (NoOpt), and after applying
batching (BatOpt). Figure 16 plots the results.

We see that batching speeds up EvaluateLRCV by up to 7x on PyPG and 5.7x on ROra. We
do not see 10x speedup for 10 folds because batching saves only scan times, not computation times.
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For an input set of size 5 for NoOpt in PyPG, we verified that the scan time is about 7x the
computation time. Thus, after we batch all folds, the computation times dominate, resulting in a
7x speedup over NoOpt. The speedup obtained by batching is higher for smaller input set size since
the relative computation times are smaller. We also verified that batching speeds up operations
like StepAdd where multiple feature sets are batched. For the same input set sizes as in Figure 16,
we observed speedups of 2x to 9x [2].

Materialization Optimization We now verify that materialization involves optimizing a per-
formance tradeoff and that our optimizer can pick optimal plans. We compare our optimizer’s plan
(based on the dynamic program in Section 3.2.2) against two naive strategies – not materializing
anything (NoMat) and materializing all projections (AllMat). We illustrate the tradeoff by varying
the values of repetitions. The input we consider here is a chain of three feature sets of lengths 5, 10,
and 15 (out of 30 features) for I/O-bound operations (CoefficientLR). We fix all three repetitions
to be equal, and show the runtimes in Figure 8.9
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Figure 8: (A) Runtimes of NoMat vs AllMat for different repetition settings for a set of three
CoefficientLR operations. The table shows speedups of the optimal materialization strategy
against both NoMat and AllMat.

Figure 8(A) shows that neither NoMat nor AllMat is always better – it depends on the repetition
value. This motivates our cost-based optimization approach, which takes repetitions into account
in order to obtain a materialization plan. The table in Figure 8 shows the speedups achieved by
our optimizer’s plan against both the naive strategies. When the repetition is low (e.g., 2), the
better strategy is to not materialize anything, and our optimal strategy matches NoMat. But
when the repetition is high (e.g., 20), the better strategy is to materialize all the feature sets and
our optimal strategy matches AllMat. For intermediate values of repetition, our optimal strategy
chooses to materialize some (not all) of the feature sets, and finds a plan faster than both NoMat

9These numbers are on PyPG, which exhibits materialization trends clearly for exposition sake.
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and AllMat. We also validated that our cost model is able to capture the scan and materialization
times accurately to enable such optimization. More details are discussed in our technical report [2].

Sensitivity to Program Size Finally, we study the role of the number of operations in the
program on the impact of our optimizations. The input we consider here is again a set of
CoefficientLR operations. The operations all have equal input feature set sizes (5), any pair-
wise unions results in 10 features. The number of iterations is 25 for each. We plot the runtimes
of four strategies – naive execution without any of our optimizations (NoOpt), batching alone
(BatOpt), materialization optimization alone (MatOpt), and both batching and materialization
optimization (BatMatOpt). Figure 9 plots the runtimes and also shows the speedups achieved by
the other strategies against NoOpt.

We see that NoOpt grows proportionately with the number of operations. BatOpt’s runtime is
largely flat because these operations are all scan-bound, even after batching. Thus, we see linear
speedups here. MatOpt chose to materialize everything, and achieves a speedup of 3.5x. It is
independent of the number of operations since the same speedup applies to each operation. Bat-
MatOpt, which applies both optimizations, is faster than each individually. It achieves a speedup
of 6.3x for 4 operations here by combining the benefits of both batching and materialization.

5.3 Provenance Management

We now present the storage and runtime overhead for capturing provenance at each of the two
granularities – coarse and fine. Table 7 lists the results for all four programs (run on their respective
datasets).

We see that the storage overhead is small for capturing results at coarse granularity – it only
stores the inputs and outputs of Columbus operations and so the overhead is only in the order
of kilobytes. Storing at fine granularity (internal details of the operations) requires space in the
tens of kilobytes. The runtime overhead of capturing provenance at coarse granularity is only 0.1%
and that of fine granularity is up to 5%. Thus, the runtime is still dominated by computations on
the data. Cens1 and Cens2 have higher overhead (space and runtime) since USCensus has more
features, which means more information is captured.

Next, we measure the utility of captured results in answering provenance queries. Without
provenance information, we might have to recompute some operations of the program. Table 8
presents the results for three example queries. Note that Q1 and Q3 are about an individual
session, while Q2 compares two sessions. We see that reusing captured results (with provenance)
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Provenance
Granularity

Program/Dataset
Ford1 Ford2 Cens1 Cens2

Storage Overhead (kB)

Coarse 2.1 5.2 4.4 11

Fine 30 58 43 210

Capture Overhead (Extra % Run-
time)

Coarse <
0.1%

<
0.1%

0.1% 0.1%

Fine 0.5% 1% 4.6% 3.2%

Table 7: Overhead for capturing provenance.

Query
Ford1 + Ford2 Cens1 + Cens2

Recomp. With Prov. Recomp. With Prov.

Q1 234 < 0.1 66 < 0.1

Q2 585 0.2 178 0.1

Q3 85 < 0.1 32 0.1

Table 8: Provenance Queries. Q1: “Which feature set has lowest score from EvaluateLRCV?”.
Q2: “Which feature sets were input to EvaluateLRCV in both sessions?”. Q3: “Which feature
sets were visited in stepwise selection?”. “Recomp.” is with recomputations, while “With Prov.”
reuses captured results. The runtimes are in seconds.
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avoids the need to recompute and since we currently query provenance in memory, query answering
times are low.

In summary, we discussed examples of feature selection processes, and showed how our frame-
work can help an analyst capture them using Columbus operations. We validated that two
performance optimizations – batching and materialization – can yield significant performance ben-
efits over large-scale data, without the analyst having to hand-tune the code. We measured the
overhead of managing provenance in our system and showed how we can answer provenance queries
and reuse results.

6 Related Work

Feature Selection Algorithms Algorithms for feature selection have been studied in the sta-
tistical and machine learning literature for decades [20, 30–32, 37]. A typical formalization is to
obtain one subset of the features of a given dataset, subject to some optimization criteria. Feature
selection algorithms are categorized into Filters, Wrappers, and Embedded methods. Filters assign
scores to features independent of what statistical model the features are used for. Wrappers are
meta-algorithms that score feature sets with a statistical model, primarily using heuristic search.
Embedded methods wire feature selection into a statistical model [31]. Our conversations with
analysts revealed that feature selection is often a data-rich process with the analyst in the loop, not
a one-shot algorithm. Our goal is to take a step towards managing the process of feature selection
using data management ideas. We aim to leverage popular selection algorithms, not design new
ones.

Scaling Feature Selection Scaling individual feature selection algorithms to larger data has
received attention in the past for specific platforms. Oracle Data Mining offers three popular feature
selection algorithms over in-RDBMS data [9]. Singh et al. parallelize forward selection for logistic
regression on MapReduce/Hadoop [47]. In contrast, our focus is on building a generic framework
for feature selection processes, rather than specific algorithms and platforms. So, we can also adopt
their techniques for our operations.

Analytics Systems Systems that deal with data management for statistical and machine
learning techniques have been developed in both industry and academia. These include data mining
toolkits from major RDBMS vendors, which integrate specific algorithms with an RDBMS [9, 33].
Similar efforts exist for other data platforms [1]. More recently, R-based analytics systems have
gained popularity [10,12,26,48]. Our work focuses on the data management issues in the process of
feature selection, and our ideas can be integrated into these systems. There has also been a massive
research push towards identifying higher-level abstractions in analytics as “sweet-spots” between
the two streams of specific algorithms and a Turing-complete language, akin to the decoupling in
relational systems. Examples include Bismarck [23], GraphLab [40], MLBase [39], ScalOps [21],
and Tuffy [42]. Our work is inspired by such efforts, but to the best of our knowledge, ours is the
first work that aims to apply such ideas to managing feature selection [18].

Performance Optimizations Batching is a classical performance optimization idea [45, 49],
and batching mechanisms have been studied in recent projects as well [25,43,49]. Our contribution
is in identifying that batching is critical to improve performance in feature selection settings. We
can leverage existing batching mechanisms to implement our batching optimization for feature
selection. Our batching formulation also considers memory footprints of operations in addition to
performance costs. Automatically selecting materialized views is a classical problem in relational
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query optimization [16, 29, 41, 46]. The problem of choosing an optimal set of views to materialize
is motivated by Gupta et al [29]. But our problem focuses specifically on projection views, which
we identify as being common in feature selection settings. We present analyses of our problem and
show an important special case where our problem can be solved optimally in polynomial time. Our
focus on performance optimizations across full programs was inspired by similar efforts in RIOT-
DB [48] and SystemML [26]. RIOT-DB optimizes I/O by rearranging page accesses for specific loop
constructs in an R program [48]. The optimizations that we focus on – batching and materialization
– are orthogonal to theirs. Our framework also enables us to apply our optimizations automatically
across an entire Columbus program. We leave it as future work to see if our optimizations can be
applied to general R code. SystemML [26] converts R-style programs to workflows of MapReduce
jobs. They describe an optimization called piggybacking, which enables sharing of data access
by jobs that follow each other. In contrast, our batching optimization fuses the data accesses
of independent jobs. We also study materialization optimization, and demonstrate non-obvious
tradeoffs that arise.

Provenance There exists a lot of work in the database literature on provenance models [22,28,
34], querying provenance [38,44], and systems for provenance [8,15,17,35]. Our work applies recent
provenance research ideas to manage provenance in feature selection processes. We also discuss
how we can detect opportunities to reuse results captured as provenance to improve performance.

7 Conclusion and Future Work

Feature selection is a key step in analytics applications. Increasingly, larger datasets are used in
feature selection applications. Recent R-based data processing systems aim to address scalability
needs, but the level of abstraction at which analysts think of feature selection is not present in
current R-based systems. We propose to use a set of common feature selection operations in a
framework that we name Columbus . We prototype Columbus over two analytics environments,
and study two classical ideas for optimizing performance: batching and materialization. We also
show how we can manage and exploit the provenance of feature selection processes for both oversight
and improving performance.

Our immediate future work is to continue our investigation into the problem of feature engi-
neering in data analytics systems. We are investigating both how to bring less structured sources of
data into the analysis problem, e.g., data from text or physical sensors and techniques to improve
the process, e.g., speculative execution of code and feature recommendations in our system to aid
the analyst.
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A Operations in Columbus

As discussed in Section refsec:system, the operations can be categorized as Explore, Evaluate and
Data-Transform operations. In the following, we shall eloborate on the operations in each of the
categories.

A.1 Explore Operations

These operations enable an analyst to traverse a lattice.
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A.1.1 Feature Set Operations

Feature Set Union:

• Input :

– Feature set relation Fin1(f), Fin2(f)

• Output : Feature set relation Fout(f)

– Feature set relation Fout(f)

• Operation : tin1 and tin2 denote the set value in the input relations, and let tout denote the
set value in the output relation. Then tout = tin1 ∪ tin2.

• Condition:

– If FD is the set of attributes of the data/feature vector relation. Then tin1 ⊆ FD, tin2 ⊆
FD and tout ⊆ FD.

Feature set Intersection:

• Input :

– Feature set relation Fin1(f), Fin2(f)

• Output :

– Feature set relation Fout(f)

• Operation : tin1 and tin2 denote the set value in the input relations, and let tout denote the
set value in the output relation. Then tout = tin1 ∩ tin2.

• Condition:

– If FD is the set of attributes of the data/feature vector relation. Then tin1 ⊆ FD, tin2 ⊆
FD and tout ⊆ FD.

Feature set Difference:

• Input :

– Feature set relation Fin1(f), Fin2(f)

• Output :

– Feature set relation Fout(f)

• Operation : tin1 and tin2 denote the set value in the input relations, and let tout denote the
set value in the output relation. Then tout = tin1 − tin2.

• Condition:

– If FD is the set of attributes of the data/feature vector relation. Then tin1 ⊆ FD, tin2 ⊆
FD and tout ⊆ FD.

A.1.2 Automatic operations

Exploratory Operations : Automatic (Lasso):

• Input :
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– Dataset relation D(FD, ID)

• Output :

– Feature set relation Fout

• Condition:

– If FD is the set of attributes of the data/feature vector relation. Let tout denote the
tuple in Fout. Then tout ⊆ FD.

A.2 Evaluate Operations

A.2.1 CoefficientLearner

The operations compute coefficients (or weights) over the features, given a dataset. An example of
CoefficientLearner is CoefficientLR, which computes the coefficents for the technique of logistic
regression. This operations is given a input feature set, input state (the initial values of the
coefficents), learner-specific parameters. It returns the output state (the learned values of the
coefficents).

• Input :

– Coef Parameters {P}
– Data D(FD, ID)

– Initial state Sin(FVin = (Fin, Iin)), where Fin ⊆ FD. The state contains initial values of
coefficents.

• Output :

– Output State Sout = (Fout, Iout))

• Condition :

– Fin = Fout

Scorer The scorers compute standard scores over the dataset, given learned coefficents. Ex-
amples of scorers include prediction error (say, classification error for logistic regression) and
cross-validation error (discussed next). We are given an input state (of coefficient) values and
input parameters and the operation returns a numeric score. It is formally represented as, S =
Opscorer(Sin, {P}, D). S ∈ R. Sin represent the input state(coefficient values) and {P} represent
the input parameters (for instance, the scoring method to used) and D represents the dataset
relation.

• Input : Sin, {P}, D
• Output: S

EvaluateLRCV EvaluateLRCV is a scorer that computes the cross-validation error and is a
workflow of learners and scorers. It is formally denoted as S = Opevallrcv(Fin, {P}, D), where Fin

represents the input feature set and {P} represent the input parameters (for instance the number
of folds) and D represent the input dataset relation. It is an work flow of atomic operations and can
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be denoted as the the composition of atomic operators for one fold is given as Opscorer ◦Oplearner ◦
σ ◦ π(Fin, D, {P}). 10

In the case of multiple folds, the output scores are averaged and the result is returned.

• Input : Fin, {P}, D
• Output: S

• Structure: Opscorer ◦Oplearner ◦ σ◦⇀↽ ◦π(Fin, D, {P})

EvaluateAIC EvaluateAIC is similar to EvaluateLRCV, where given a feature set Fin, {P}, and
dataset relation D, it computes the Akaike Information Criterion (AIC) score. It is denoted as
follows S = Opevalaic(Fin, {P}, D), where Fin represents the input feature set and {P} represent
the input parameters and D represent the input dataset relation. It is a workflow of atomic
operation and can be denoted as a sequence of atomic operations. It can be represented as S =
OpScorer ◦Oplearner(Fin, {P}, D).

• Input : Fin, {P}, D
• Output: S

• Structure : S = OpScorer ◦Oplearner(Fin, {P}, D).

Correlation Correlation operation takes 2 input features F1, F2 and returns a correlation value
C, it is represented as C = Opcorr(F1, F2, {P}, D)

SemiAutomatic operations StepAdd/Drop

• Input : Fin, D, {P}
• Ouput : Fout.

• Condition : StepAdd: |Fout| = 1 + |Fin|
StepDrop: |Fout| = |Fin| − 1.

• Structure : argminFs( EvaluateLRCV(Fs, D, {P})), Fs is obtained by adding/deleting one
feature to the Fin and then each such feature is evaluated independently (stepwise selection).

A.3 Data transformation operations

These operations, modify the data set that can be given as inputs to the Explore and Evaluate
operations of our framework. It can be denoted as Di = Q(D). We consider SPJUA queries Q for
our data transformations.

10The shuffling of the dataset, which is required for sampling without replacement, is performed once a priori and
the shuffled dataset is assumed to be used subsequently for the full program.
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B Batching Optimization

We now present the extended problem statements, and algorithms for batching optimization, as
mentioned in Section 3.2.1.

B.1 BatOptCPU: Batching with CPU costs

We now consider both scan costs and CPU costs of nodes when assigning nodes to batches. Direct-
Memory-Access (DMA) will now impact which nodes get assigned to which batch. It will try to
force each batch to become CPU-bound. We formulate the BatOptCPU problem as an ILP.

Entities:

• Given dataset R(F) with full feature set F
• DAG of scan-based nodes G(V,E), |V | = N . E imposes a dependency partial order ≤ on V ,

and the height of the partial order is H.

• Feature sets of the nodes, f : V → 2F .

• A batch is a set of nodes, b ⊆ V juxtaposed onto the same scan of R.

• Clearly, the minimum number of batches is H. The problem is to choose an allocation of
nodes to batches that minimizes the overall cost.

Inputs:

• S, scan cost of R(F).

• c : V → R+, CPU costs of each node

Variables:

• X : V × {1 . . . H} → {0, 1}, indicators to assign a node to a batch

Objective: Minimize: Sum of each batch’s MAX(Scan, total CPU)

H∑
h=1

max{S,
∑
v∈V

X(v, h)c(v)}

Constraints:

•
∑h

i=1X(v, h) = 1, ∀v ∈ V , i.e., a node is assigned to exactly 1 batch

• X(u, h)+X(v, h) ≤ 1, ∀(u, v) ∈ E, ∀h = 1 . . . H, i.e., connected nodes cannot be in the same
batch

•
∑h

i=1X(u, i) ≥
∑h

j=1X(v, j), ∀(u, v) ∈ E, ∀h = 1 . . . H, i.e., prevent reordering

Note that when H = 1 (i.e., E = φ), the problem becomes trivial – just assign all nodes in V
to a single batch. For H > 1 (i.e, E 6= φ), it appears like a classical resource allocation problem.
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Theorem B.1. Given G(V,E) with E 6= φ, the scan cost S, and CPU costs of each node in V ,
BatOptCPU is NP-Hard in the width of the partial order imposed by E on V .

Proof: We prove by reducing the NP-Hard problem of SetPartition to our problem. Given
an instance of SetPartition, i.e. a multiset of positive integers T = {a1, a2, . . . , aN}, partition
it into two subsets T1 and T2 such that

∑
x∈T1

x =
∑

y∈T2
y = 1

2

∑
z∈T z = w (say). We now

construct an instance of BatOptCPU as follows. G(V,E) has N + 2 nodes, with two special nodes
v1, v2 satisfying v1 < v2. Set the CPU cost of c(v1) = c(v2) = b, where b ∈ Z+ is some constant.
The remaining N nodes have no dependencies, which means the width of the partial order in G is
N + 1. These N nodes correspond to the elements of T – their CPU costs are set as the elements
from T . Set the scan cost S = b + w. Clearly, the height of the partial order on G is 2, which
means the optimal number of batches is 2. Wlog, let v1 be in batch 1 (so v2 is in batch 2).

We now claim that the given SetPartition instance has a solution if and only if the optimal
cost of our problem instance is 2S. Suppose there is a solution (T1, T2) to the SetPartition
instance. Then, simply read the elements in T1, and assign its corresponding nodes in G to batch
1. Repeat for 2. So the cumulative CPU cost in each batch is w + b = S, which means we now
have the optimal solution cost of 2S for our problem instance. Conversely, if our problem instance
has a solution with cost 2S, then by the pigeonhole principle, it means that the CPU costs of the
independent N nodes were1 split evenly across the two batches. Simply read the nodes in batch 1
(other than v1) and assign its corresponding elements in T to T1. Repeating for 2, we get a solution
to the given SetPartition instance.

B.2 Batching under Memory Constraints

Our batching problem as formulated before packs the nodes of the DAG G(V,E) into a chain of
nodes G′(V ′, E′). We now consider a memory-constrained setting, where we cannot batch nodes
indefinitely. More precisely, we are given a system memory budget M , and memory footprints of
each node in G as f : V → R+ (we assume f(v) ≤M,∀v ∈ V ). Our goal is now to pack the nodes
of G into a sequence of batches such that we minimize the number of batches.

Theorem B.2. Given G(V,E), a memory limit M , and the memory footprints of all nodes in V ,
batching optimization is NP-Hard in the width of the partial order imposed by E on V .

Proof: The problem can easily be reduced from BinPacking. Given a bin size B, objects to
pack {xi} with sizes {si}, we construct an instance of our problem as follows: set M = B. Create
G(V,E) such that V corresponds exactly to {xi}, and E = φ. Set the memory footprints of
the nodes in V as the the corresponding sizes in {si} The problem instances are now equivalent,
and thus an optimal solution to our instance will be an optimal solution to the given instance of
BinPacking.

First-Fit Heuristic: Consider nodes from V that form an antichain, i.e., no pair among them
is comparable with respect to the partial order imposed by E on V . There are no dependencies
among the nodes in an antichain and so they can all go into the same batch. Note that the length
of the longest such antichain is by definition the width of the partial order on G. Our heuristic
algorithm is given in Algorithm 2. Since E imposes a partial order on V , our DAG G(V,E) we will
have at least as many antichains as the height of this partial order. We simply apply Algorithm 2
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to each antichain individually. We construct the antichains in time O(|V |+ |E|) using a topological
sort of G(V,E). Since the antichains need not be unique, we use the following technique to obtain
a unqiue set of antichains – We simply assign a node in V to an antichain k if k is the earliest
possible occurrence of that node in any topological order on V (i.e., how “far” is that node from
the “start” of the DAG).

Algorithm 2: First-Fit Heuristic used for Batching under Memory Constraints

Data: Antichain of nodes W ⊆ V , Memory footprints f : W → R+, Memory limit M
Result: Number of batches X, and allocation a : W → {0, 1, . . . , X}
X ← 1
a(w)← 0,∀w ∈W //initialization
foreach w ∈W do

for x = 1 to X do
if f(w) +

∑
u∈W :a(u)=x f(u) ≤M then

a(w)← x
break

end

end
//w is still not alloted to any batch
if a(w) = 0 then

X ← X + 1
a(w) = X

end

end
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C Materialization Optimization

We first restate Theorem 3.1 from the body, and give its proof.

Theorem C.1. Our dynamic program solves MatOpt for chains in time O(N2), with space O(N2).

Proof: With N input feature sets, the dynamic program fills the lower triangular part of the
N ×N memo (excluding diagonal elements) in time Θ(N(N − 1)/2). Filling the diagonal elements
requires referring to each row above (upto the diagonal element), is in time Θ(N(N − 1)/2 + N).
Reading the backpointers is in time Θ(N). Thus, the overall algorithm is in time O(N2). The
memo of time costs in in space Θ(N(N − 1)/2 + N), while the backpointers are in space Θ(N).
Thus, the overall space complexity is also O(N2).

C.1 Materialization with Computation Costs

We now consider CPU costs in addition to scan and materialization costs for the formulation
of MatOpt from Section 3.2. The CPU cost of an atomic operation op that accesses a feature
set F ⊆ F is denoted Computeop(F ). We assume that each feature set in S = {F1, . . . , FN}
is associated with a unique CPU cost. Thus, we drop the subscript op in Computeop for nota-
tional convenience. This means we can have some feature sets Fi, Fj ∈ S such that Fi = Fj , but
Compute(Fi) 6= Compute(Fj). Note that the chain assumption still holds, i.e., F ⊇ F1 · · · ⊇ FN .
We define Access(x, y) = max(Compute(x), Scan(y)), where x, y ∈ S ∪ {F} and x ⊆ y. Our
problem MatOpt now has a slight change.

min
S′⊆S

Cost(S′),

where Cost(S′) =
∑
s∈S′

min
t∈S′∪{F}\{s}: s⊆t

Store(t, s)

+
∑
s∈S

r(s) min
t∈S′∪{F}: s⊆t

Access(s, t)

Dynamic Program The dynamic program for T (i, j) is modified slightly as in Algorithm 3. Since
only the access cost inputs (which are constants) are different here, the algorithm’s complexity is
unaffected.
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Algorithm 3: Dynamic Program for MatOpt with chain input and computation cost.

//∀i ≥ 0, entries using full dataset

T (i+ 1, 0) = r(Fi+1) Access(Fi+1,F) + T (i, 0)

//∀j ≤ i, entries using last materialization
T (i+ 1, j) = r(Fi+1) Access(Fi+1, Fj) + T (i, j)

//∀i ≥ 1, diagonal entries with materialization costs

T (i, i) = min
j=1...i−1

(Store(Fi, Fj) + T (i− 1, j)) + r(Fi) Access(Fi, Fi)

Algorithm 4: Dynamic Program for MatOpt on a k-width Lattice.

//i ≥ 0 :

T (i+ 1,0) = T (i,0) +
∑

j=1...k

r(F (i+ 1, j))Scan(F)

//i ≥ 0; v s.t. ∀j = 1 . . . k, vj ≤ i :

T (i+ 1,v) = T (i,v) + [
∑

j=1...k

r(F (i+ 1, j))] min
l=1...k

Scan(F (vl, l))

//i ≥ 1; v s.t. ∀j = 1 . . . k, vj ≤ i, and ∃j = 1 . . . k, s.t. vj = i :

T (i,v) =
∑

j:vj=i

(r(F (i, j))Scan(F (i, j)))+

[
∑

j:vj<i

r(F (i, j))] min
l=1...k

Scan(F (vl, l))+

min
w:wj<i,∀j:vj=i, and wj=vj ,∀j:vj<i

[T (i− 1,w) +
∑

j:vj=i

min
l=1...k

Store(F (i, j), F (wl, l)]
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C.2 Materialization with Bounded-width Lattice

We now study MatOpt for the input feature sets existing in a bounded-width lattice. We will
then prove Theorem 3.2 from Sec 3.2 in the body. Recall the setup: the feature sets in S have a
lattice ordering L : (S,⊆). Let the height of L be N (i.e., we have N levels L1 . . . LN ). The width
of L is a given constant k (i.e., k sets at each level). Sets in L1 . . . LN−1 have k children each, and
sets in L2 . . . LN have k parents each. In this case, our dynamic program’s memo is richer and has
k entries per slot, corresponding to the width of the lattice. In this scenario, we can still compute
an optimum in time polynomial in N (but exponential in the constant k).

We introduce a convenient “grid” notation for the feature sets in S that we will use in the rest
of this section. We write S = {F (i, j)}, i ∈ {1, . . . , N} and j ∈ {1, . . . , k}. A level is thus a set of
feature sets with the same i, while we call a set of feature sets with the same j as a “column”.

Dynamic Program: Our memo is changed to T (i,v), which is the cumulative Cost upto level
i, and v = (v1, . . . , vk) is a k-length vector of indices, each of which refers to the level at which the
last materialization was done in its respective column (0 ≤ vj ≤ N, ∀j = 1 . . . k). We define T (i,v)
recursively (considering only scan and materialization costs) as given in Algorithm 4.

Theorem C.2. Our dynamic program solves MatOpt for bounded-width lattices in time O(k22kNk+1)
with space O(Nk+1).

Proof: The proof is along the lines of that for Theorem 3.1. In our memo T (i,v), i can take N
values, and v is a k-length vector in which each entry vj can take one of N values. Thus the size
of the memo is O(N × Nk). The backpointers require a space of only Θ(N), making the overall
space complexity O(Nk+1).

Fixing i, there is 1 entry of the form T (i,0), computing which is in time Θ(k). So we get total
time O(Nk) here.

Fixing i, there are ik − 1 entries of the form T (i,v), s.t. ∀j, vj ≤ i− 1, and v 6= 0. Computing

each is in time Θ(k). So we get total time k
∑N

i=1(ik − 1) = O(Nk+1) here.
Finally, fixing i, the entries of the form T (i,v), s.t. ∀j, vj ≤ i, and ∃j, s.t. vj = i and their

total time can be computed using a z to count how many vj exist such that vj = i. So the time
spent for a fixed i is:

t(i) =
k∑

z=1

(
k

z

)
ik−z(z + (k − z)k + izzk)

= kik
k∑

z=1

(
k

z

)
z + k2

k∑
z=1

(
k

z

)
ik−z − (k − 1)

k∑
z=1

(
k

z

)
ik−zz

≤ kik(k2k−1) + k2ik[(1 + i−1)k − 1]

≤ k22kik + k2[(i+ 1)k − ik]

So the total time we get here is ≤
∑N

i=1 t(i) ≤ k22kNk+1 + k2(N + 1)k ≤ ck22kNk+1, for some
constant c. Thus, the time here is O(k22kNk+1). So the overall time is also O(k22kNk+1).

34



C.3 General set of sets

We now prove Theorem 3.3 from Section 3.2 of the body.

Theorem C.3. MatOpt is NP-Hard in the width of the lattice on S, the set of input feature sets.

Proof: We prove by reduction from the NP-Hard problem of SetCover-EC We are given a
universe of elements F , and a family S of subsets of F that covers F , i.e., ∪s∈Ss = F , such that
s ∈ S has equal cardinality L. The optimization version of SetCover-EC asks for a sub family
S′ ⊆ S of minimum |S′| that covers F . We reduce an instance of SetCover-EC to an instance of
our problem as follows:

F is the treated as the full set of features. Let |S| = N . Create N feature set inputs
{Fs|Fs ⊆ F}, one for each s ∈ S. We use S for {Fs} as well. All Fs equal cardinality L. Create
|F| additional feature singleton set inputs {xj}, representing singleton feature sets from F . We
use X to denote {xj}. We now construct other inputs to our problem conforming to our cost model:

Firstly, make CPU costs negligible so that data access (scan) times are linear only in the number
of features in the dataset. It is given by Scan(Fj) = α|Fj |, where α is a free parameter. Note that
it does not depend on Fi, which is the input for computations.

Secondly, materialization costs are also linear, and given by Store(Fi) = Scan(F)+Write(Fi) =
α|F| + β|Fi|, where β is also a free parameter. It is reasonable to assume that only F is used for
materialization since we can always make S an antichain by dropping a set contained in another
within S in the given SetCover-EC instance.

Thirdly, set the repetitions of all Fs to be equal to γ, another free parameter. Set the repetitions
of every xj to 1.

The idea is that members of X will never be materialized since their individual materialization
costs are higher than just accessing F , or any member of S. So, we set the parameters of our
problem instance in such a way that our optimal solution will materialize a subset of S to use both
for serving those feature sets covers all of X. This optimal materialized subset will be an optimum
for the given SetCover-EC instance.

Recall that we have 3 free parameters – α, β, and γ. The given instance of SetCover-EC
gives us F (the universe of features), S (the family of subsets of F), N (= |S|), and L (cardinality
of each member of S). Our problem’s objective function (S′ ⊆ S)is given by:
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Cost(S′) =
∑
s∈S′

(Store(s) + γScan(Fs)) +
∑

s∈S\S′
γScan(F)

+
∑

x∈X:∃s∈S′,x⊆s
Scan(Fs) +

∑
x∈X:∀s∈S′,x 6⊆s

Scan(F)

= |S′|((α|F|+ βL) + γαL) + (|S| − |S′|)γα|F|
+ αL(#xj covered by S

′) + α|F|(#xj not covered by S′)

= |S|γα|F| + |S′|(−γα|F|+ α|F|+ βL+ γαL)

+ αL|X| + α(|F| − L)(#xj not covered by S
′)

The terms |S|γα|F| and αL|X| above are constants independent of S′, and so we can drop them
from the optimization. Thus, we rewrite as :

Cost(S′) = |S′|(α|F|+ βL− γα(|F| − L)) + α(|F| − L)(#xj not covered by S
′)

Now, |F|, L, and N(= |S|) are given by the instance. We demonstrate a choice of α, β, γ such
that the optimal solution to the above gives the optimal to the SetCover-EC instance:

Firstly, we want the coefficient of |S′| above (call it p) to be positive, i.e., p = α|F| + βL −
γα(|F|−L) > 0. This can be done by fixing any positive value for α. Then fix any positive integer
value for γ. Then, we choose a positive β s.t. β > α(γ(|F| − L) − |F|)/L. Call the RHS d (say),
i.e., d := α(γ(|F| − L)− |F|)/L, and β > d.

Secondly, we need to see if the maximum value of the first term (which is Np, when S′ = S) is
outweighed by an occurrence of the second term (i.e., when at least one xj is not covered). In other
words, we check if Np < α(|F| − L). Expanding p, it becomes if N(α|F| + βL − γα(|F| − L)) <
α(|F|−L). Rearranging in terms of β, it becomes if β < α(γ(|F|−L)−|F|)/L + α(|F|−L)/(LN),
i.e., if β < d + α(|F| − L)/(LN). Since the second term is positive (as |F| > L), we only have to
choose β such that d < β < d + α(|F| − L)/(LN).

Since not covering even one xj raises the cost more than choosing all the sets, a minimum cost
solution to our problem instance will always cover all xj , and will minimize among the chosen
subsets of S. Thus, an optimal solution to our problem instance as constructed above will be an
optimal solution to the given instance of SetCover-EC.
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C.4 Online optimization

We now make one simple relaxation to introduce the online setting – not all repetitions, {r(Fi)}Ni=1},
are known up front. The motivation is that the number of iterations for an operation (e.g., a
coefficient learner) is not known up front due to its stopping conditions.

Notation and Problem Description We see a sequence (in time) of feature sets F (t), t =
1, 2, ..., where at iteration t, we have a data access with feature set input F (t). Our assumption of
chain structure among the feature sets is unchanged, i.e., F ⊇ F (t1) ⊇ F (t2).... The problem is to
devise a strategy that decides online whether or not to materialize a feature set with the aim of
improving overall performance. We solve it by adapting the standard “break-even” algorithm for
the ski-rental problem. We count the waste W (t) accurued across iterations, tracking the potential
performance savings lost by not taking the optimal decision (which could have been done had we
known the iterations a priori).The waste evolves with the iterations, and helps decide the materi-
alization of Fi, as explained in Algorithm 5.

Algorithm 5: Online Algorithm for materialization optimization.

Initialize W(0) = 0
Before beginning some t ≥ 1:
if πF (t)(R) is present then

//no waste incurred here: use πF (t)(R)
W (t) = W (t− 1)

else
//F ∗ is the last materialized dataset (could be F originally): use πF ∗(R)
W (t) = W (t− 1) + Scan(F ∗)− Scan(F (t))

After some t ≥ 1:
if W (t) ≤ Store(F (t+ 1)) and W (t) + Scan(F ∗)− Scan(F (t+ 1)) > Store(F (t+ 1)) then

Materialize πF (t+1)(R), and replace F ∗ ← F (t+ 1)

Theorem C.4. The Online Algorithm yields a solution whose cost is ≤ 2× the cost of the optimal
(i.e., optimization with repetitions known a priori).

Proof: Consider the period from the start upto a t∗ when the first feature set is materialized by
the Online Algorithm. Thus, we have our waste:

W (t∗) = t∗Scan(F)−
t∗∑
t=1

Scan(F (t) (1)

W (t∗) ≤ Store(F (t∗ + 1)), and (2)

W (t∗) + Scan(F)− Scan(F (t∗ + 1)) > Store(F (t∗ + 1)) (3)

Since we will materialize F (t∗ + 1), our cost upto and including t∗ + 1 will be:

OnlineCost(t∗ + 1) = [

t∗∑
t=1

Scan(F)] + Store(F (t∗ + 1)) + Scan(F (t∗ + 1)) (4)
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Now, we claim that the Optimal must have materialized at least one feature set at or before
t∗ + 1. Using the claim, we provide the following lower bound on its cost:

OptimalCost(t∗ + 1) ≥
t∗∑
t=1

Scan(F (t)) + Store(F (t∗ + 1)) (5)

Clearly, the first part of the lower bound is the cumulative scan cost, which is inevitable. The
claim to prove is that the materialization cost of F (t∗ + 1) is admissible in the lower bound. We
show that it is admissible because the Optimal must have materialized some feature set F (t′),
where t′ ≤ t∗ + 1. Recall that since F (t′) ⊇ F (t∗ + 1), Store(F (t∗ + 1)) is a lower bound on the
materialization cost of any feature set that came before. We now prove the lower bound claim by
contradiction. Assume the Optimal did not materialize anything till and including t∗ + 1. So, it
would have used F to serve all feature sets upto and including t∗ + 1. But since Optimal yields a
minimum cost, the following should hold:

(t∗ + 1)Scan(F) ≤
t∗+1∑
t=1

Scan(F (t)) + Store(F (t∗ + 1)) (6)

Substituting the waste from Inequality 1 into the above, we get:

W (t∗) + Scan(F)− Scan(F (t∗ + 1)) ≤ Store(F (t∗ + 1) (7)

The above inequality contradicts Inequality 3. Hence, the lower bound in Inequality 5 holds.
Now, we subtract Inequality 5 and Equation 4, and then use Inequalities 2 and 5.

OnlineCost(t∗ + 1)−OptimalCost(t∗ + 1) ≤W (t∗) + Store(F (t∗ + 1))+

Scan(F (t∗ + 1))− Store(F (t∗ + 1))− Scan(F (t∗ + 1))

= W (t∗)

≤ Store(F (t∗ + 1))

≤ OptimalCost(t∗ + 1)

Thus, we get the 2-approximation for this interval.

OnlineCost(t∗ + 1) ≤ 2×OptimalCost(t∗ + 1) (8)

We can repeat the same argument as above for the next internal, i.e., between the first and
second materialized feature sets of the Online Algorithm. For the second interval, F (t∗+1) will play
the role of F above, and we will again get the 2-approximation. Since the 2-approximation holds
in each interval, adding them all up means the Online Algorithm yields an overall 2-approximation
to the Optimal.
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D Provenance Management

For the explore and evaluate operations defined in our frame work, provenance information can be
maintained at different level of granularities. Let us define an operation Op as O = Op({I}), where
I is the set of inputs and O is the output. The operation Op can be either atomic or work flow
of atomic operations as in EvaluateLRCV. We now define coarse and fine grained level of workflow
provenance.

Definition D.1. Coarse grained : Let W = Op1 ◦ Op2 ◦ ..Opn . Consider an instance of logical
operation W as (Op1 ◦Op2 ◦ ..Opn)(I1, I2, ..., In) = O, with initial input {I1, I2, ..., In}. The coarse
grained provenance of W , denoted PW (O), is given by {I1, I2, ..., In}.

Definition D.2. Fine grained : Let W = Op1 ◦ Op2 ◦ ..Opn . Consider an instance of logical
operation W as (Op1 ◦Op2 ◦ ..Opn)(I1, I2, ..., In) = O, with initial input {I1, I2, ..., In}. If e is the
initial input element then PW (e) = {e}.If e is any intermediate output, let POp(e) denote the one
level provenance of e with respect Op. Then PW (e) =

⋃
e′∈POp(e′) PW (e′)

D.1 Provenance for each Operation

In this section, we shall define coarse and fine grained provenance for the operations defined in our
framework.

D.1.1 Atomic Operations

Feature Insert and Delete The add and delete are atomic operations, that enable the user to
incoporate the domain knowledge. The operation is given by Fout = Op(Fin1, Fin2), where Fin1,
Fin2 denote the input feature sets and Fout denote the output feature set. The provenance is given
by Pop(Fout) = {Fin1, Fin2}

Automatic selection algorithms Automatic selection algorithms are considered as off-the shelf
algorithms where the internals of the algorithm is assumed to be unknown.

Lasso Let Fin denote the input feature set, {P} denote the input parameters and R denote the
data set relation. Then the operation is denoted as Fout = Op(Fin, {P}, R). The provenance is
given by POp(Fout) = {Fin, {P}, R}

Learners Let Fin denote the input feature set, {P} denote the input parameters. Sin denote
the input state and R denote the data set relation. Then the operation is denoted as Sout
= Op(Fin, {P}, Sin, R), where Sout represents the output state . The provenance is given by
POp(Sout) = {Fin, {P}, Sin, R}.

Scorers Let Sin denote the input co-efficients, Fin denote the input feature set {P} denote the
input parameters and let R denote the input data set relation. Then the scoring operation is
denoted as S = Op(Fin, {P}, Sin, R). The provenance is given by POp(S) = {Fin, {P}, Sin, R}.
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D.1.2 Columbus Operations

Operations in Columbus are workflows of atomic operations. Recall that EvaluateLRCV and
EvaluateAIC are workflows of atomic learners and scorers and stepwise selection operations (StepAdd
and StepDrop) are workflows of EvaluateLRCV or EvaluateAIC. The coarse grained workflow prove-
nance of Columbus operations records the all of inputs and output of each operation, i.e., feature
set input values, dataset identifiers, and parameters. For example, for EvaluateAIC, we will record
the feature set input and output AIC score alone. The fine grained workflow provenance records
the provenance for each of the atomic operation in the workflow of the Columbus operation. For
example, for EvaluateAIC, we will record the coefficent values after each iterations as well. And
for a StepAdd with AIC scores, we will record the AIC scores (and coefficents) of each feature set
visited inside the workflow of that StepAdd.

Data transforming operations We consider Select, Project, Join, Union, and Aggregation
transformations in our framework. All composite SPJ transformations T can be transformed in to
a sequence of algebraic transformations. And the transformations are maintained logically in terms
of attribute mappings and filters as menitioned in [34]. For atomic operations like Shuffle, Sort we
record the input dataset and its input paramters.

D.2 Matching workflows

Recall that Explore and Evaluate operations are workflows of atomic operations. In our framework
we identify equivalence among operations simply using a syntactic subexpression matching. Thus,
an operations of type CoefficientLR can only match with another CoefficientLR. The purpose
of identifying such subexpression matches is to reuse the results (captured as provenance) of prior
computations on the dataset, thus improving performance. We describe a simple algorithm that
identifies such subexpression matches in the absence of any data transforming operations in Algo-
rithms 6 and 7. Two Columbus programs are represented as workflows W1,W2, which are DAGs
of Columbus operations.

Algorithm 6: Subwork flow equivalence in the absence of data transform operators

Data: Workflows W1(V1, E1), W2(V2, E2)
Result: Returns True if W2 is contained in W1

initialization: C1 = head(W1), C2 = head(W2);
if type(C1) = type(C2) then

return subFlowMatch(C1, C2)
else

return False;

The above algorithm has time complexity O(NM), where N is the number of nodes in W1

and M is the number of nodes in W2. In our system, all provenance information for Colum-
bus operations are stored as relational tables (or equivalent forms) in memory. To check if a given
Columbus operation instance can reuse prior computations, a simple lookup of the operation
(along with its inputs and parameters) is done. If the operation was computed earlier, the results
are used and the computation is suppressed. Note that our workflows can have Data-Transform
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Algorithm 7: SubFlowMatch

Data: Logical nodes v1, v2 from the work flows W1 and W2

Result: Returns True if dag with root v2 is contained in dag with root v1

initialization: C1 ←− children(v1), C2 ←− children(v2), res ←− False ;
if C2 = φ then

return True

if C1 = φ then
return False

for each child c2 in C2 do

doneFlag ←− False
res ←− False
for each child c1 in C1 and doneFlag =False do

if input and types of c1 and c2 match then
res ←− SubFlowMatch(c1, c2)
if res = True then

doneFlag ←− True

if res = False then
return False

return res

operations that represent relational SPJUA queries. We currently use a syntactic subexpression
match to detect equivalence among the relational queries as well.
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E OptBatMat: Joint Optimization of Batching and Materializa-
tion

We now discuss an improvement to our BatMatOpt strategy, which performs batching, followed by
materialization optimization. In some scenarios, we can get faster plans by considering batching
and materialization optimizations jointly. This is because batching enforces unions of feature sets
to make them larger, while materializations takes advantage of small feature sets. This sets up a
tradeoff with competing properties of the two optimizations. Since the materialization optimization
is already NP-Hard, jointly optimizing for batching and materialization is clearly at least NP-
Hard. We formulate the joint optimization as an ILP. Note that our strategy of BatMatOpt in
Section 5 mitigates the hardness of joint optimization by performing batching first, followed by
materialization optimization.

Assumptions:

• The only difference with the previous formulation is that here, we do not assume that all
nodes at the same iteration are always batched. Instead, we assign nodes to batches, and
batches to datasets.

• Thus, we start with a DAG (actually a forest of chains) of nodes, each representing one scan.

Entities:

• Given dataset R(F ) with full feature set F

• DAG of dependencies among nodes G(V,E), |V | = N . Let T be the length of the longest
path in G (i.e., maximum number of iterations among operations)

• Feature sets of the nodes, f : V → 2F .

• C = Distinct{f(v)|v ∈ V } be the distinct input feature sets. The set of candidates for
materialization are D = {∪c∈CS

c|CS ⊆ C}, i.e., each element of D is the union of the
elements from a subset of C. Note that C ⊆ D ⊆ 2F . Let D′ = D ∪ {F} to add in the full
dataset.

• Let Q ⊆ V ×D′ be the set of pairs obtained using feature set containments among nodes and
candidates, i.e., Q = {(v, d)|v ∈ V, d ∈ D′, f(v) ⊆ d}.
• A batch is a set of nodes, b ⊆ V juxtaposed onto the same scan of a d ∈ D′ – called a batched

data access. Note that this requires (v, d) ∈ Q,∀v ∈ b.

Inputs:

• m : C → R+, projection materialization costs (assuming only R(F ) is used as input)

• p : V → R+, computation costs of each node

• s : D′ → R+, data access costs (of projected datasets)

Variables:

• I : D′ → {0, 1}, indicators to choose which candidates to materialize.

• B : D′ × {1 . . . T} → {0, 1}, indicators to choose batched data accesses; each dataset in D′

could have T sequential accesses, labeled 1..T .

• X : Q × {1 . . . T} → {0, 1}, indicators to assign feasible node-candidate pairs to a sequence
number
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Objective:

min
I,B,X

∑
d∈D

I(d)m(d) +
∑
d∈D′

∑
t=1..T

B(d, t) MAX{s(d),
∑

(v,d)∈Q

X((v, d), t) p(v)}

(i.e., materializations + each batch′s max(Scan,CPU))

Constraints:

•
∑

(v,d)∈Q
∑

t=1..T X((v, d), t) B(d, t) I(d) = 1,∀v ∈ V , a node is assigned to exactly 1 batched
data access on a dataset that is present/materialized.

•
∑

(i,d)∈QX((i, d), t) +
∑

(j,d)∈QX((j, d), t) ≤ 1,
∀(i, j) ∈ E, ∀t = 1..T ,

nodes connected in G(V,E) cannot be assigned the sequence number.

•
∑

(i,d)∈Q
∑

t=1..T ′ X((i, d), t) ≥∑
(j,d)∈Q

∑
t=1..T ′ X((j, d), t),

∀(i, j) ∈ E, ∀T ′ = 1..T , assigned sequence numbers have to preserve
the ordering of nodes in G (to prevent “deadlocks”).

• I(F ) = 1, full dataset is always present.

Notes:

• The problem is a QP, since the objective has a product of variables (the MAX can be replaced
with a variable, and more constraints).

• The first set of constraints are cubic, but they can be replaced with five sets of linear con-
straints:

∀v ∈ V,
∑

(v,d)∈Q
∑

t=1..T X((v, d), t) = 1
i.e., each node goes to only 1 batched data acccess.

∀(d, t) ∈ D′ × {1..T},∑
(v,d)∈QX((v, d), t) ≤M1 ∗B(d, t), and∑
(v,d)∈QX((v, d), t)− 1 ≥M2 ∗ (B(d, t)− 1)

i.e. each batched data access exists if and only if at least one node uses it.

∀d ∈ D,∑
t=1..T B(d, t) ≤M3 ∗ I(d)∑
t=1..T B(d, t)− 1 ≥M4 ∗ (I(d)− 1),

i.e. each dataset is materialized if and only if it has at least one batched data access.

where M1..M4 are large (> |Q|T ) positive constants.
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F Experiments

F.1 Columbus Programs

F.1.1 Ford1

For the simplicity of exposition, we shall refer each feature by its index and the index starts from
0 (and goes up to 29 on the Ford dataset). The number of training iterations for CoefficientLR,
EvaluateLRCV, StepAdd, and StepDrop is by default 5, unless otherwise indicated.

1. d1 = Dataset(c(“Ford”)) #Register the dataset
2. s1 = FeatureSet(c(0:9))
3. l1 = CorrelationX(s1, d1)
4. s2 = FeatureSet(c(1, 3, 5, 6))
5. l2 = EvaluateLRCV(s2, d1)
6. s3 = FeatureSet(c(4))
7. s4 = Union(s2, s3)
8. l4 = EvaluateLRCV(s4, d1)
9. s5 = FeatureSet(c(10:29))
10. s6 = StepAdd(s4, s5, d1, “AIC”) #AIC score; exclude s5
11. s7 = FeatureSet(c(3, 4, 5, 6))
12. l5 = EvaluateLRCV(s7, d1)
13. s8 = FeatureSet(c(10:19))
14. l8 = CorrelationX(s8, d1)
15. s9 = FeatureSet(c(11, 14, 15 , 16))
16. l9 = EvaluateLRCV(s9, d1)
17. s10 = FeatureSet(c(20))
18. s11 = Union(s9, s10)
19. s12 = FeatureSet(c(19:29))
20. s13 = Union(s7, s9)
21. l10 = CoefficientLR(s13, d1) //#default parameters
22. l11 = CorrelationX(s12, d1)
23. s14 = FeatureSet(c(27, 28))
24. s15 = Union(s11, s14)
25. l12 = CoefficientLR(s15, d1)
26. l13 = EvaluateLRCV(s15, d1)
27. s16 = FeatureSet(c(11, 14, 15, 16, 28))
28. s17 = StepDrop(s16, d1, “AIC”, 20) #AIC score; 20 iterations

Figure 10: Program Ford1.

F.1.2 Ford2

For the simplicity of exposition, we shall refer each feature by its index and the index starts from
0 (and goes up to 29 on the Ford dataset). The number of training iterations for CoefficientLR,
EvaluateLRCV, StepAdd, and StepDrop is by default 50, unless otherwise indicated.
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1. d1 = Dataset(c(“Ford”)) #Register the dataset
2. s1 = FeatureSet(c(0:4), d1))
3. s2 = FeatureSet(c(9:29), d1))
4. s3 = Union(s1,s2), d1))
5. l1 = CoefficientLR(s3, d1)
6. s4 = BestK(l1, 6) #Top 6 features
7. s5 = StepDel(s4, d1, “AIC”) #AIC score
8. s6 = StepDel(s5, d1, “AIC”) #AIC score
9. s7 = StepDel(s6, d1, “AIC”) #AIC score
10. s8 = FeatureSet(c(5:8), d1))
11. s9 = Union(s7,s8)
12. l2 = CoefficientLR(s9, d1)
13. s10 = BestK(l2, 5) #Top 5 features
14. l3 = CorrelationX(s10, d1)
15. s11 = FeatureSet(c(8:29))
16. s12 = StepAdd(s10, s11, d1, “AIC”)#AIC score; exclude s11

Figure 11: Program Ford2.

F.1.3 Census1

For the simplicity of exposition, we shall refer each feature by its index and the index starts from 0
(and goes up to 160 on the Census dataset). The number of training iterations for CoefficientLR,
EvaluateLRCV, StepAdd, and StepDrop is by default 5, unless otherwise indicated.
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1. d1 = Dataset(c(“Census”)) #Register the dataset
2. s1 = FeatureSet(c(6:13))
3. l1 = CorrelationX(s1, d1)
4. s2 = FeatureSet(c(6,8,10,12))
5. l2 = EvaluateLRCV(s2, d1)
6. s3 = FeatureSet(c(15:82))
7. s3p = FeatureSet(c(14))
8. l3 = CorrelationL(s3p,s3)
9. s4 = FeatureSet(c(15:24))
10. l4 = EvaluateLRCV(s4, d1)
11. s5 = FeatureSet(c(44:58))
12. l5 = EvaluateLRCV(s5, d1)
13. s6 = FeatureSet(c(84:128))
14. s6p = FeatureSet(c(129))
15. l6 = CorrelationL(s6p,s6)
16. s7 = FeatureSet(c(84:93))
17. l7 = EvaluateLRCV(s7, d1)
18. s8 = FeatureSet(c(131-161))
19. s8p = FeatureSet(c(130)
20. l8 = CorrelationL(s8p,s8)
21. s9 = FeatureSet(c(131:140))
22. l9 = EvaluateLRCV(s9, d1)
23. s10 = Union(s2,s4)
24. s11 = Union(s10,s7)
25. s12 = Union(s11,s9)
26. l0 = CoefficientLR(s12, d1)
27. s13 = BestK(l10, 11) #Top 11 features
28. s14 = StepDrop(s13, d1, “AIC”, 20) #AIC score; 20 iterations

Figure 12: Program Census1.

F.1.4 Census2

For the simplicity of exposition, we shall refer each feature by its index and the index starts from 0
(and goes up to 160 on the Census dataset). The number of training iterations for CoefficientLR,
EvaluateLRCV, StepAdd, and StepDrop is by default 50, unless otherwise indicated.

46



1. d1 = Dataset(c(“Census”)) #Register the dataset
2. s1 = FeatureSet(c(0:9), d1))
3. s2 = FeatureSet(c(13:160), d1))
4. s3 = Union(s1,s2), d1))
5. l1 = CoefficientLR(s3, d1)
6. s4 = BestK(l1, 20) #Top 20 features
7. s5 = StepDel(s4, d1, “AIC”) #AIC score
8. s6 = StepDel(s5, d1, “AIC”) #AIC score
9. s7 = StepDel(s6, d1, “AIC”) #AIC score
10. s8 = FeatureSet(c(10:12), d1))
11. s9 = Union(s7,s8)
12. l2 = CoefficientLR(s9, d1)
13. s10 = BestK(l2, 10) #Top 10 features
14. l3 = CorrelationX(s10, d1)
15. s11 = FeatureSet(c(15:161))
16. s12 = StepAdd(s10, s11, d1, “AIC”)#AIC score; exclude s11

Figure 13: Program Census2.
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F.2 Batch Setting Scalability: Other Programs

Figure 14 plots the runtimes of the full programs Ford2 and Cens1 on their respective datasets. As
with Cens2 in Figure 6 of Section 5, materialization in addition to batching yields more significant
speedups than batching alone on Ford2. And similar to Ford1 in Figure 6 of Section 5, batching
alone yields significant speedups on Cens1. However, materialization optimization increases the
speedups significantly here because subsequent operations in Cens1 access less than half the features,
even after batching.
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Figure 14: Batch setting for (A) Ford2 and (B) Cens1 on both systems as the dataset size is scaled
up. NoOpt is naive execution, BatOpt applies batching, and BatMatOpt applies both batching and
materialization optimizations. The speedups achieved by BatOpt and BatMatOpt against NoOpt
are also shown.

F.3 Batching Optimization: StepAdd

Figures 15 and 16 plot the runtimes for StepAdd with and without batching optimization (within
the operation across feature sets). Since the dataset has 30 features, an input set size of 5 means
that the operations computes coefficients for 25 feature sets, each of size 6. Similarly, an input set
size of 25 means we have 5 feature sets, each of size 26. Batching speeds up StepAdd by 2x-9x on
SynFord-8GB, and by 5x-19x on SynFord-16GB.
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Figure 16: Runtimes of StepAdd (one training iteration, AIC). The dataset is SynFord-16GB.
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F.4 Cost Model Validation

We now validate that our cost model is able to help our optimizer make accurate predictions of
runtimes to choose optimal plans. Fixing a dataset R(F), our cost model to capture the costs of
projection materializations, scans, and computations is as follows:

• The cost of a scan on a dataset with features F , i.e., scanning πF (R), is denoted Read(F ) and
modeled as a linear function a+ b|F |. More precisely, to account for buffer memory residency
of datasets, the scan cost is a two-piece linear function.

• The cost of materialization of F , i.e., writing πF (R) is denoted Store(F ) and also modeled
as a linear function c + d|F |. For simplicity, we use the fixed full dataset R(F) to perform
materializations, although we can also model it as a function of two variables (denoting the
number of features in the dataset and the number of features to project).

• The computation costs of individual operations are modeled as linear or quadratic functions
of the input feature set size. Specifically, CoefficientLR and EvaluateLRCV are linear while
CorrelationX is quadratic. StepAdd and StepDrop are modeled as a function of two variables
– the number of feature sets they visit and the length of each feature set.

We obtain the values of the constants in the above cost formulae by performing a few offline
passes over R(F). Half a dozen values of F are chosen to obtain representatives value of the costs.
We then perform linear (or quadratic, if needed) regression to obtain the final cost model values.

F.4.1 Cost Model: End-to-end

The optimizer uses the cost model to predict runtimes of alternate execution strategies. To verify
the end-to-end accuracy of our cost model, we present the predicted and actual runtimes of a full
program (Ford1) on two large synthetic datasets in Table 9.

Program on Dataset Strategy Predicted Actual Error

Ford1 on SynFord-12GB
NoOpt 71140 72691 2.1%
BatOpt 11538 11217 2.8%

BatMatOpt 8981 8941 0.4%

Ford1 on SynFord-16GB
NoOpt 94198 104258 9.6%
BatOpt 15284 14717 3.8%

BatMatOpt 12197 11879 2.7%

Table 9: Predicted and actual runtimes on a full program Ford1 on two large synthetic datasets
for all three strategies. The costs of scans, materializations, and computations are all considered
by the optimizer when predicting the runtimes. The runtimes are in seconds.
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F.4.2 Cost Model: Materialization Optimization

We now validate that our cost model enables our optimizer to pick optimal materialization decisions.
Recall Figure 8(A) from Section 5 that compared our optimizer’s plan against two naive strategies
– not materializing anything (NoMat) and materializing all projections (AllMat). The input here is
a chain of three feature sets of lengths 5, 10, and 15 (out of 30 features) for I/O-bound operations
(CoefficientLR). We fix all three repetitions to be equal, and vary the repetitions. We now present
the runtimes of 8 possible plans, and compare how accurate our optimizer’s predictions are. The
8 plans are numbered as follows: Plan 1 is NoMat. Plan 2 is to materialize {F1}. Similarly,
Plan 3: {F2}, Plan 4: {F3}, Plan 5: {F1, F2}, Plan 6: {F2, F3}, Plan 7: {F1, F3}, and Plan 8:
AllMat. Figure 17 shows that various values of repetitions, our optimizer’s predicted lowest-cost
plan matches that actual fastest plan.
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Figure 17: Predicted and actual runtimes across the space of 8 plans for the experiments in Figure
8(A) of Section 5 for 3 values of repetitions. The chosen lowest-cost plans (both predicted and
actual) are indicated by arrows. The predicted optimal plan matches the actual fastest plan in all
the three cases.
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