
Brainwash: A Data System for Feature Engineering

Michael Anderson∗ Dolan Antenucci∗ Victor Bittorf† Matthew Burgess∗
Michael Cafarella∗ Arun Kumar† Feng Niu† Yongjoo Park∗ Christopher Ré†

Ce Zhang†
{mrander,dol,mattburg,michjc,pyongjoo}@umich.edu {bittorf,arun,leonn,chrisre,czhang}@cs.wisc.edu

∗University of Michigan, Ann Arbor †University of Wisconsin, Madison

ABSTRACT
A new generation of data processing systems, including web
search, Google’s Knowledge Graph, IBM’s Watson, and sev-
eral different recommendation systems, combine rich databases
with software driven by machine learning. The spectacular
successes of these trained systems have been among the most
notable in all of computing and have generated excitement
in health care, finance, energy, and general business. But
building them can be challenging, even for computer scien-
tists with PhD-level training. If these systems are to have a
truly broad impact, building them must become easier.

We explore one crucial pain point in the construction of
trained systems: feature engineering. Given the sheer size
of modern datasets, feature developers must (1) write code
with few effective clues about how their code will interact
with the data and (2) repeatedly endure long system waits
even though their code typically changes little from run to
run. We propose brainwash, a vision for a feature engineer-
ing data system that could dramatically ease the Explore-
Extract-Evaluate interaction loop that characterizes many
trained system projects.

1. INTRODUCTION
Trained systems are a new generation of information sys-

tems that allow one to answer rich queries over data that is
less structured than traditional relational data. The best-
known example is the modern search engine, but others in-
clude IBM’s Watson, Google’s Knowledge Graph, and var-
ious recommendation systems. Their success has opened a
broad range of verticals in health care, finance, energy, and
even in traditional enterprises. The potential value of these
systems is hard to estimate but likely to be staggering: Web
search is a single vertical.

Unfortunately, these systems are famously challenging to
build, even for highly trained computer scientists. One jour-
nalist described Google’s search team as engaged in a “re-
lentless slog” [5]. Watson took 20 engineers and researchers
3 years of work before it was competitive with human play-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

ers [3]. The amount of academic firepower that eventually
focused on the Netflix Prize belied the relatively tiny finan-
cial reward involved [1]. There is huge demand for such sys-
tems, but the current process for building them is daunting
for even the richest and most tech-savvy organizations – let
alone those organizations that do not routinely attract large
numbers of computer science PhDs. If trained systems are
to become truly widespread, building them needs to become
much easier.

We believe a critical pain point in building these sys-
tems is feature engineering. Features, sometimes called sig-
nals, encode information from raw data that allows machine-
learning algorithms to classify an unknown object or esti-
mate an unknown value. For example, consider the observa-
tion that the title of a webpage might be more indicative of
the page’s topic than a typical paragraph-embedded piece of
text. The search-engine designer might write a small piece
of feature code that returns true if the user’s search query
is present in a page’s title and false otherwise. A trained
system figures out the relative importance of this feature for
future tasks during the learning phase.

Features may seem quite ordinary, merely one of the many
ingredients that go into a large-scale machine-learning effort
(along with raw data, cluster software, human-provided la-
bels, and scalable statistical algorithms). However, a few
lessons from the growing body of wisdom surrounding trained
systems suggest they are quite remarkable:

1. The More Features, The Merrier. Statistical break-
throughs are academically “sexy,” but most trained systems
seem to win through lots of features. In 2010, Google’s rank-
ing algorithm used 200 distinct features and planned to add
550 more that year [5]. Watson used “more than 100 differ-
ent techniques” for computing an answer, and its designers
emphasized the role of employing many loosely coupled ex-
perts [3]. These lessons are entirely consistent with some
authors’ preference for data over model sophistication [4].

2. Feature Man-Months Aren’t Mythical. Features
can be integrated through light-weight, loosely coupled sta-
tistical methods, not the management-heavy techniques re-
quired by traditional software components. In principle,
large numbers of feature engineers should be able to op-
erate with minimal coordination, apart from the moment
when their features’ statistical contributions are actually
evaluated. Indeed, this organizational principle seems to
have been discovered in a roundabout way during the Net-
flix Prize competition [1]:

Teams that had it basically wrong — but for a few
good ideas — made the difference when combined
with teams which had it basically right. . . The top
two teams beat the challenge by combining teams
and their algorithms into more complex algorithms
incorporating everybody’s work. The more people
joined, the more the resulting team’s score would
increase.

Unfortunately, writing features can be extremely painful.
On the surface, building a feature may seem to be just an-
other software engineering task, albeit one that is run over
very large datasets. However, in our experience engineer-
ing features requires dramatically more iteration and ad-
justment. A completed feature is often a small piece of code
that is relatively easy to reproduce and does not reflect the
large amount of code that was written, tested, and thrown
away. We note three ways in which feature engineering is
uniquely excruciating:

1. Grunt-Work Statistics. First, there is a lot of sta-
tistical“grunt work.” A feature processes a large dataset
— e.g., the set of all webpage titles — whose charac-
teristics are often wholly novel to the developer. Even
simple features are hard to write without some com-
modity metadata, such as frequency distributions of
unique values, lists of outlier values, and some simple
visualizations. Today the feature developer performs
this grunt work for every new feature, by hand.

2. Unknowable Specs. Most interesting datasets are
large and noisy, making the actual feature code “spec”
nearly unknowable without repeated testing against
the data itself. For example, it is easy to informally
describe a feature such as, “A social media user’s name
is somewhat indicative of the user’s age.” That is, a
user with the name Brittany is relatively unlikely to be
elderly in 2013. But implementing this feature entails
implementing a first version, then learning that user
names often have numbers and adjectives appended to
a human first name, then writing code to strip off these
suffixes, then testing the code again.

3. Unexpected Failure. Even a perfectly implemented
feature can be an unexpected failure, either because
it does not capture any useful information or because
its information is already captured by a previously im-
plemented feature. For example, it may be that the
name-based method above is helpful when considered
alone, but does not add any predictive power beyond
text-based methods (say, counting the number of “lol”s
in a social media user’s status updates). If the text-
based method had been implemented first, then all the
work to implement the name feature is wasted effort.

These three burdens of feature engineering — grunt-work
statistics, unknowable specs, and unexpected failure — turn
the developer’s life into an endless cycle of small iterative
code changes and tests. Moreover, most feature code runs
over huge datasets that require scalable “big data” systems.
The few systems that support the user-defined code neces-
sary for feature engineering (e.g., MapReduce [2]) have gen-
erally emphasized throughput over latency. Cluster software
thus forces developers to endure high-latency waits (perhaps

hours or even days) in the “inner loop” of the feature devel-
opment cycle. As a result, feature engineering is a time-
consuming and draining experience.

We envision a system, brainwash,1 to dramatically im-
prove the productivity of feature engineers. It provides per-
vasive programmer hints to address the constant iteration as-
sociated with feature development. In contrast to the hints
provided by today’s IDEs (which are derived from code snip-
pets or header files), hints in brainwash are derived from
the data under inspection as well as code written by other
brainwash developers. It is a multiuser system that has
three phases:

1. In Explore, brainwash speeds the feature engineer
through grunt-work statistics by automatically pro-
viding commodity information like frequency distri-
butions and automatically-chosen illustrative samples
from the dataset.

2. In Extract, brainwash attempts to recommend a fea-
ture that is both likely to yield benefits and roughly
compatible with the developer’s code so far. brain-
wash accomplishes this by repurposing semi- and un-
supervised methods for feature induction as recom-
mendation methods.

3. In Evaluate, brainwash enables the engineer to eval-
uate how well or poorly their new features perform in
the context of the entire trained system. The chal-
lenge for brainwash is to run and evaluate features
as quickly as possible. It does so by speculatively ex-
ecuting code it thinks the user will want to run in the
future; while features can be arbitrary pieces of code,
it is possible to make educated guesses about what the
code actually does even without directly understand-
ing the source. For example, two functions that were
written by the same user just a few minutes apart are
likely to be small modifications of one another.

By increasing the velocity of the developer in each phase
of the Explore-Extract-Evaluate loop, brainwash aims to
improve developer effectiveness during feature engineering.

In the next section we review two case studies from our
own work, illustrating problems with feature engineering to-
day and showing how it could be improved. In Section 3, we
propose brainwash and describe its design.

2. CASE STUDIES
We now describe two feature engineering case studies from

trained systems being built by the authors of this paper.
GeoDeepDive integrates scientific data for geoscientists.
Automan aims to reproduce national economic statistics
using social media activity.

2.1 GeoDeepDive
Today, an individual geologist has a micro view of geo-

science: she has access to measurements from at most a
handful of the approximately 30,000 geographical units in
North America, usually data collected in her own and part-
ner labs. Other labs’ data is buried in the text, figures, and

1brainwash is a reference to the artist Mr. Brainwash, or
MBW, who mass-produces art in the mold of famous street
artist Banksy. Similarily, we propose to mass-produce the
artistry required by today’s trained systems.

graphs of webpages and journal articles. Even simple macro-
view questions, such as, “How much carbon is in the North
American rock record?” are unanswerable without extract-
ing and aggregating these disparate measurements.

GeoDeepDive aggregates data from multiple sources to
build a single macro-view database.2 A geologist can browse
geological regions on a map, filter by various criteria, and
see relevant extracted data along with textual provenance.

The machine learning problem is largely one of entity link-
ing. Geological data is often tied to a simple tuple consist-
ing of a spatial component, a temporal component, and a
hierarchy of “formation” types. Geologists use precise lan-
guage to refer to formation names, but may refer to loca-
tions only obliquely, e.g., “near the panhandle.” The feature
engineering task for GeoDeepDive is to find hints that ac-
curately map these text-embedded “geo-tuples” to elements
in a database. The feature developers encountered the usual
ration of troubles:

1. Grunt-Work Statistics. The input dataset held roughly
20,000 geology-oriented papers of unknown content and
style. The quantity and distribution of figures, ta-
bles, footnotes, formations, and unambiguous place-
names naturally have a large impact on which features
are even possible. Developers had no way to obtain
that information except to write a series of fairly dull
statistics-gathering programs.

2. Unknowable Specs. At the start of the project it
was not obvious to the computer scientists, and per-
haps too obvious to the geologists, that “black shale”
refers not just to carbon but to carbon along with a
very specific range of possible temporal values. There
was no way for developers to learn that “black shale”
needed a specialized processor without actually slog-
ging through the data.

3. Unexpected Failure. To link phrases like “this for-
mation”to actual geological formations, developers used
a baseline pronoun-coreference feature that maps phrases
like “this formation” to the nearest formation-name
mention in the previous paragraph. One might expect
more sophisticated features to lead to significant qual-
ity improvement. Yet developers found that more so-
phisticated features that consult either document-level
statistics or deep linguistic parsing have essentially the
same accuracy as the baseline feature. Moreover, when
both types of features are used, there was no notable
improvement in quality.

2.2 Automan
Automan’s goal is to use social media data to collect

economic statistics.3 For example, an increase in the number
of users who write “I need a job” may indicate a growth in
unemployment. Statistics derived from social media hold the
promise of being much faster and less expensive to gather
than traditional survey-driven data.

An important part of economic data is the demograph-
ics of the individuals involved. For example, a 20-year-old
college student who needs a summer job occupies a very dif-
ferent economic position from a 55-year-old factory worker

2For an overview, including a demonstration video, see
http://hazy.cs.wisc.edu/geodeepdive.
3See a demo video at http://youtu.be/iq_IW34QeJQ.

who has been laid off. While traditional surveys collect re-
liable demographic data, most social media systems do not.

Thus, Automan estimates the age of each social media
user, even though most users do not reveal any explicit age
information at all. In this work, we have focused on Twitter
data, which comprises timestamped messages and the users’
social network. Building this trained system entailed the
same three problems.

1. Grunt-Work Statistics. Just knowing the basic struc-
ture of the input data is enough to suggest a number
of statistics that would be useful for feature engineer-
ing: the number of messages, the number of users, the
rate of message production, how many friends different
users have, how many messages are roughly useful for
economics statistics, etc. Computing each one of these
numbers required dedicated code.

2. Unknowable Specs. The student working on this
project actually encountered the name-formatting is-
sue described in Section 1. Another example concerns
messages where the author reveals his own age, e.g.,
“I am 35 years old.” It initially seemed users have no
motivation to be misleading. But people in some cases
will ironically exaggerate their age, as in, “I threw out
my back today. I’m 100 years old.” Removing these
false statements improved the age predictor. It is hard
to imagine that the feature engineer could know ahead
of time that an irony-detector could be a useful tool.

3. Unexpected Failure. For all the work that went
into the Brittany feature that exploits name popular-
ity information, it did not turn out to be very useful.
Experiments so far have shown it adds almost no pre-
dictive power beyond a system that examines word
choice and the friend network. The name-popularity
feature seemed initially compelling but was a poor in-
vestment of engineering resources.

We now describe how brainwash addresses these challenges.

3. BRAINWASH: PRELIMINARY DESIGN
We can now propose a preliminary design based on an

Explore-Extract-Evaluate interaction loop with the devel-
oper. It aims to improve feature engineering via pervasive
programmer hints and low-latency program execution.

We observe that our previous projects used data sets from
a wide variety of sources: structured data, Tweets, images,
and text corpora stored in flat files. To process such diverse
data, we view it as crucial that brainwash not be tied to any
particular data processing system, but instead sit as a layer
between the developer and the data storage and processing
substrates. Our current plan is to create adapters for a
variety of storage and processing systems: main memory,
relational databases, key-value stores, flat files, distributed
filesystems, and MapReduce.

One consequence of our choice to support a wide variety
of data sources is that brainwash’s data model must be
relatively flexible. The model comprises sparse tuples that
have list as a first-class type — they are roughly similar to
Protocol Buffers [6]. brainwash models features as user-
defined functions that consume and produce lists of tuples.
The developer explicitly declares input and output schemas
for each feature.

We treat feature development as a workflow of developer-
written functions udf0, udf1, ..., udfN . A “run” i consists of
applying udfi to each tuple in the input dataset (e.g., each
webpage, each academic paper, or each Tweet). Like the
map() from MapReduce, a udf function invocation takes a
single tuple from the input and yields zero or more tuples
that are placed into the run’s output.4 Explicit schemas
allow brainwash to guess what the udf is doing, even if the
function consists entirely of opaque compiled code.

We envision brainwash as a centralized system that sup-
ports many developers and projects simultaneously. Even if
developers do not explicitly collaborate, the system stores
and sometimes repurposes developers’ work. brainwash
can thus exploit knowledge about the udf workflow, the
dataset, and developer activity to address each of the three
problems encountered in feature engineering.

1. Explore: Grunt-Work Statistics. brainwash can as-
sist with statistics collection by leveraging the formal schema
and previous users’ udfs. Exploiting schema information for
the raw input file should be straightforward: the system can
automatically read the input, counting tuples and fields as it
goes. The result should be a rough overview similar to what
is offered in data integration tools such as Google Refine.
However, this schema information is not sufficient when the
developer wants to see statistics on “derived objects” that
come from running udfs on a subfield of the raw input, such
as the named entities embedded in a webpage.

We can automate statistics on derived objects by examin-
ing the output schemas and datasets from previous udfs that
share an input schema with the current one under develop-
ment. For example, consider a developer who has written
one udf that transforms a raw input file of webpage tuples
into a series of paragraph instances and then writes a series
of different udfs that transform paragraph into a large range
of outputs with different schema formats. The body of udfs
not only provides evidence that paragraph is an interesting
and broadly useful object, it also provides brainwash with
the code necessary to produce paragraph. Further, we do
not need to limit these automated statistics to the user who
actually wrote paragraph-producing code: it can be used to
help any programmer who needs to process webpages.

2. Extract: Unknowable Specs. brainwash should pre-
emptively suggest code that will address unknowable specifi-
cation problems before the developer even encounters them.
For example, any developer who needs to process first names
in social media is likely to want to remove all the strange
username suffixes described in Section 1.

We can do this by pairing schema matching with code
suggestion. Imagine a user A who has written udfA

i which
extracts usernames from Tweets, as well as udfA

i+1 that nor-
malizes the usernames. Now user B writes a function udfB

j

that has an input schema similar to udfA
i and generates out-

put that is similar to that produced by udfB
i . brainwash

should then suggest that B run udfA
i+1 and can present sam-

ple input/output pairs to explain why.
There may be a large number of candidate functions that

B could apply — ranking these will be a core technical chal-
lenge. Like other ranking systems, udf suggestion should

4brainwash also allows aggregation, similar to reduce(),
but we omit our description of this mechanism to simplify
our exposition.

improve as developers use the system, providing additional
evidence about which udfs are appropriate in which cases.

3. Evaluate: Unexpected Failure. Improving the over-
all performance of the trained system is, in the end, the
feature developer’s real goal. But measuring a feature’s real
contribution to the end-to-end system can entail training
and testing many different permutations of features, each
step of which may need to process a huge dataset. As a re-
sult, developers sidestep system-wide evaluation for far too
long in the development process. brainwash encourages fre-
quent and full evaluation by saving data on previous feature
permutations, and speculatively training statistical systems
using features under development.

The system automatically formulates code according to
the above three features, then sends the results to the user’s
IDE. In many of the above cases, the system both formulates
code and speculatively executes it on the user’s behalf.

This speculative formulate-and-execute cycle is what al-
lows brainwash to not just give programmer hints, but
reduce execution latency as well. In some cases, such as
the explore component above, brainwash reduces user-
apparent latency simply by removing the work from the
user’s todo list — we do the work when there’s slack time
in the back-end processing system. In other cases, as with
extract, the user’s coding target is unclear; the system tries
to guess it, executes the resulting code, and hopes that the
effort was not wasted. Even if the user’s goal is not pre-
dicted, the system can use previous iterations of the current
udf to determine which input tuples are likely to yield useful
outputs and prioritize these during processing.

4. CURRENT STATUS AND NEXT STEPS
We are building an initial prototype of brainwash based

on the code of GeoDeepDive, Automan, and an earlier
web-scale prototype called DeepDive (http://hazy.cs.wisc.
edu/deepdive). Our plan is to refine brainwash and these
active research projects in parallel.

brainwash raises several research questions. One that we
have examined is the efficacy of different feature-engineering
methods. Earlier this year, we performed the first study that
compares two popular methods used in the explore-extract-
evaluate loop, distant supervision and crowdsourcing, to ex-
tract relationships at web scale [7]. This study sparked our
interest in using distant supervision to recommend features
in the explore and extract phases. We plan to use brain-
wash as a vehicle to continue such studies.

5. REFERENCES
[1] E. V. Buskirk. How the Netflix Prize Was Won. Wired, 2009.
[2] J. Dean and S. Ghemawat. MapReduce: Simplified Data

Processing on Large Clusters. In OSDI, pages 137–150, 2004.
[3] D. Ferrucci. An Overview of the DeepQA Project. AI

Magazine, 2012.
[4] A. Y. Halevy, P. Norvig, and F. Pereira. The Unreasonable

Effectiveness of Data. IEEE Intelligent Systems, 2009.
[5] S. Levy. How Google’s Algorithm Rules the Web. Wired,

2010.
[6] https://developers.google.com/protocol-buffers/.

[7] C. Zhang, F. Niu, C. Ré, and J. Shavlik. Big Data versus the
Crowd: Looking for Relationships in All the Right Places. In
ACL, 2012.

