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ABSTRACT

We describe our proposed demonstration of GeoDeepDive,
a system that helps geoscientists discover information and
knowledge buried in the text, tables, and figures of geol-
ogy journal articles. This requires solving a host of classi-
cal data management challenges including data acquisition
(e.g., from scanned documents), data extraction, and data
integration. SIGMOD attendees will see demonstrations of
three aspects of our system: (1) an end-to-end system that is
of a high enough quality to perform novel geological science,
but is written by a small enough team so that each aspect
can be manageably explained; (2) a simple feature engineer-
ing system that allows a user to write in familiar SQL or
Python; and (3) the effect of different sources of feedback on
result quality including expert labeling, distant supervision,
traditional rules, and crowd-sourced data.

Our prototype builds on our work integrating statistical
inference and learning tools into traditional database sys-
tems [3, 2]. If successful, our demonstration will allow at-
tendees to see that data processing systems that use machine
learning contain many familiar data processing problems
such as efficient querying, indexing, and supporting tools
for database-backed websites, none of which are machine-
learning problems, per se.
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1. INTRODUCTION
There has been an explosion of data sources that con-

tain valuable information but are difficult for an application
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developer to use. This difficulty stems from several charac-
teristics of these new data sources: the structure of the data
may be unknown to the developer, the data may be less
structured than traditional relational data, or it may be in
a non-ASCII format, e.g., scanned PDFs. In a rough analogy
with dark matter in physics, which is the unseen mass of the
universe, some have coined the term dark data to describe
this wealth of data that sits beyond the reach of application
developers. While each of the problems surrounding dark
data have been studied in isolation (in some instances for
decades), an application writer faces the problem of acquir-
ing, extracting, and integrating data in a holistic way.

We propose to demonstrate GeoDeepDive, our ongoing
effort to build a dark-data extraction system to support geo-
science. Our system is currently being built in collaboration
with geologists. Our goal is to support novel geological sci-
ence, e.g., understanding the carbon cycle and characteriz-
ing the organic carbon content of Earth’s crust. Currently,
geoscience research is conducted at the microscopic level,
i.e., one can find out information about the handful of for-
mations that a research group can read about or personally
visit. Building on Shanan Peters’ Macrostrat database1, a
PostgreSQL-based database of geological facts about North
America, our hope is that GeoDeepDive can enhance this
database to provide one of the most comprehensive, data-
backed macroscopic views of the Earth. Similar macroscopic
views have been assembled by hand by our collaborators – at
great expense – have yielded remarkable insights about the
Sulfur cycle [1]. Our hope is that a system like GeoDeep-

Dive can help accelerate this type of science.
We build on our group’s recent work on scalable statistical

learning, inference, and acquisition techniques [7, 6]. Our
goal is to demonstrate three aspects of our system.

(Aspect 1) End-to-end System. We demonstrate an end-
to-end dark data system that delivers results that are
of a high enough quality to be used in geological sci-
ence. However, as the system was built by a small
team, it is small enough that a SIGMOD attendee can
see the pipeline end to end.

(Aspect 2) Simpler Feature Engineering. Our intended
users are scientists, not computer scientists. To sup-
port them, we tried to abstract the messy, but routine,
details of machine learning as possible. We developed a
framework that allows one to express features in popu-
lar scripting and programming languages, e.g., Python

1
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Figure 1: GeoDeepDive Front-end System.

and SQL. We believe it will be interesting to many
SIGMOD attendees that some statistical inference and
learning tasks do not require specialized languages.

(Aspect 3) Different Sources of Feedback. Our system
is able to take several types of feedback [6]: crowd-
sourced labels, human expert labels, distant supervi-
sion, and traditional hard rules or constraints. One as-
pect of our demonstration is understanding how each
type of feedback contributes to various quality metrics.
We will provide sliders where attendees can use differ-
ing amounts of each type of feedback and see the re-
sults compared to a geologist-provided gold standard.

The remainder of this paper is organized as follows: Sec-
tion 2 walks through the GeoDeepDive front end and back
end. Section 3 describes our intended demonstration scenar-
ios in detail.

2. SYSTEM WALK-THROUGH
We introduce both the front-end and back-end systems of

GeoDeepDive.

2.1 GeoDeepDive Front-end System
Figure 1 shows the front-end system of GeoDeepDive.

Geologists whose intention is to use GeoDeepDive as a
research tool are the main consumers of GeoDeepDive’s
front-end system. A geologist uses the front-end system to
learn about different entities, e.g., rock formations, loca-
tions, temporal intervals, etc. When designing the front-end
system, we aggregate and expose the extractions to geolo-
gists to support their research.

Figure 1(a) shows the homepage, which gives an overview
of all extractions in GeoDeepDive. GeoDeepDive ex-
tracts mentions for each type of entity, and relations among
entities. As shown in the global statistics column, we have
about 500K extractions for rock units and 24K measure-
ments for rock formations from 122K geology journal arti-
cles.2 These extractions are distributed across the entire
U.S. and Canada. The map consists of a set of polygons,
each of which represents a geological area. The opacity of
each polygon represents the number of extractions in that
area.

Geoscientists can dive into a single entity to see extrac-
tions aggregated by different dimensions, e.g., temporal in-
terval, location, etc. For example, Figure 1(b) shows all

2
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Figure 2: Signals that GeoDeepDive uses

Total Organic Carbon (TOC) extractions for Barnett For-
mation organized by temporal intervals. In this example,
GeoDeepDive shows extractions for four temporal inter-
vals: Pennsylvanian, Mississippian, Osagean, and Cheste-
rian. Geoscientists can click on a temporal interval to see
extractions and their provenance.

2.2 GeoDeepDive Back-end System
The back-end system of GeoDeepDive extracts mentions

of entities and relations among entities from geology jour-
nal articles for the front-end system. To achieve this with
high quality, GeoDeepDive takes a diverse set of signals,
as shown in Figure 2. The design goal of GeoDeepDive’s
back-end system is to make the integration of these resources
easy, and abstract as much of the messy machine learning
details as possible.

GeoDeepDive uses Elementary [7], our machine read-
ing system, to extract mentions and relations. The same
framework has been applied to other domains, e.g., the frame-
work built DeepDive [4] for web-scale relation extraction
from news articles. In DeepDive, recall was important, but
precision was less important. However, in GeoDeepDive

the results need to be used for science so high precision
(95%+) is required. We briefly describe Elementary, and
how it was used to develop GeoDeepDive.

Data Model. Elementary has a very simple data model.
However, as we will see later, this data model can still sup-
port sophisticated statistical learning and inference.

Elementary uses a relational data model, i.e., relation-
in-relation-out. The input of the system is a corpus of
documents D and a set of relations V̄ . Each document
di ∈ D consists of a set of possibly overlapping text spans
(e.g., tokens, phrases, or sentences) T (di). Define T (D) =
∪di∈DT (di). The relations in V̄ may contain training ex-



amples, text representation of PDFs, dictionaries of place
names, or complete databases, e.g., the entire Macrostrat
relational database. The output of our system is a set of
relations that contains extracted and integrated data.

To represent the target knowledge base, we adopt the clas-
sic Entity-Relationship (ER) model: the schema of the tar-
get knowledge base is specified by an ER graph G = (Ē, R̄)
where Ē is one or more sets of entities, and R̄ is one or more
relationships. Define E(G) = ∪E∈ĒE, i.e., the set of known
entities. To specify an extraction task to Elementary, one
provides the schema G and the text corpus as text spans
T (D). Our goal is to populate the following tables:

1. Entity-mention tables ME(E, T (D)) for each entity
type E ∈ Ē.

2. Relationship-mention tables MRi
⊆ T (D)k+1 for each

Ri ∈ R̄, where k is the arity of Ri, the first k at-
tributes are entity mentions, and the last attribute is
a relationship mention.

3. Relationship tables Ri ∈ R̄.

Both ME and MRi
provide provenance that connects the

knowledge base back to the documents supporting each fact.
We call the process of populating ME entity linking, and the
process of populating MRi

relation extraction. Intuitively,
the goal is to produce an instance J of these tables that is
as large as possible (high recall) and as correct as possible
(high precision).

To create and populate new relations, Elementary goes
through a standard three-phase pipeline: feature extraction,
statistical learning, and statistical inference. We briefly in-
troduce these three phases, and the reader can consult [7]
for details.

Feature Extraction. In this phase, Elementary produces
feature relations based on evidence relations and other pre-
viously extracted features. A feature relation is a standard
database table with an arbitrary schema. A feature extrac-
tor is a Python function or SQL query provided by users.

Figure 3 shows an example feature extractor for corefer-
ence, in which we decide which mentions are coreferent. The
input relation Phrase contains a list of phrases. The out-
put relation CorefTo maps each phrase to the phrase that is
coreferent with it. To write a feature extractor, a developer
needs to provide two pieces of information.

1. Schema: A developer needs to define the input rela-
tion and the schema of the output relation. In Fig-
ure 3, the input relation is specified by an SQL query,
which produces phrase pairs that appears in the same
document; the output relation is CorefTo the output
of which is a set of pairs of phrases that are coreferent.

2. Function: A developer then provides a Python func-
tion that populates the output relation. In Figure 3(c),
the Python function processes each row of the SQL re-
sults, and outputs (emit) a tuple into CorefTo if the
edit distance (edit dist) between two phrases is smaller
than 5.

Given a set of feature extraction functions, Elementary
will populate the specified relations by running Python func-
tions as UDFs and SQL over the input relations. Elemen-

tary uses standard database techniques to run this compu-
tation in parallel.

Figure 3: An Example Feature Extractor

Statistical Learning and Inference. After the feature ex-
traction phase, Elementary populates a set of relations,
called query relations, which contain predictions, e.g., that
two mentions are coreferent. This stage performs statistical
inference and learning, but Elementary’s goal is to hide
that from developers. Here, Elementary does two tasks:
(1) weight learning, in which Elementary’s goal is to assign
weights to the rules written in the previous step, e.g., func
in Figure 3, and (2) inference, in which we use the learned
weights to infer the contents of the query relations.

To perform step (1), Elementary uses the evidence tu-
ples provided by experts and crowd workers as labeled ex-
amples, e.g., CorefTo. The rule in Figure 3 is not a high-
precision rule, and therefore, a smaller weight will be as-
signed by Elementary automatically. Then, Elementary
performs step (2) and runs statistical inference to populate
the query relation (here, CorefTo) using our group’s recent
techniques [3, 7].

3. DEMONSTRATION SETTING
The SIGMOD attendees will participate in a live demon-

stration of all three aspects of our system: (1) the end-to-end
system, (2) our simple feature engineering system, and (3)
the ability to explore different sources of feedback. Also,
a SIGMOD attendee will discover new geological facts and
write extractors to improve GeoDeepDive on her own.

3.1 Aspect 1: End-to-end System
The first aspect shows how GeoDeepDive delivers high-

quality results and helps geoscientists discover interesting
facts about our Earth. We also show the end-to-end process
of how GeoDeepDive’s back-end system runs to generate
the front-end system.

Front-end System. Analyzing changes and singular points
in geological measurements can provide evidence and impli-
cations about geoscience phenomena such as the Cambrian
explosion [5]. One measurement that is interesting to our
geoscience collaborators is Total Organic Carbon (TOC).
Our collaborators try to understand how TOC changes across
different epochs and basins. This is not an easy task for
them, because there are more than 10K journal articles, 3K
tables, and 800K web pages related to TOC. WithGeoDeep-

Dive, they are able to access knowledge in these resources
without reading and aggregating extractions by themselves.

SIGMOD attendees will see how to use GeoDeepDive to
discover these facts. The interaction will be based on real



queries that SIGMOD attendees are interested in. But we
have a set of prepared questions. We describe one example.

Suppose that a SIGMOD attendee wants to understand
how TOC changes in Barnett Formation across different
epochs. Without GeoDeepDive, she needs to go through
papers related to Barnett Formation, manually record TOC
reports in different epochs, and aggregate them together.

With GeoDeepDive, we can search“Barnett Formation.”
GeoDeepDive will report 13 TOC extractions for Barnett
Formation in 36K geoscience journal articles. These extrac-
tions are grouped by different views, one of which is time.
We then click the time view to see the results organized
in different temporal intervals. For the Barnett Forma-
tion, GeoDeepDive has extractions for four temporal in-
tervals: Pennsylvanian, Mississippian, Osagean, and Ches-
terian. These extractions span across Texas. From these
extractions, we discover that the average TOC predicted by
GeoDeepDive for the Barnett Formation is around 6%.

Back-end System. We demonstrate an end-to-end execu-
tion of the back-end system to process one document. SIG-
MOD attendees will see the input and output of (1) feature
extraction, (2) statistical learning, and (3) statistical infer-
ence. The result will be loaded into the front-end system to
create a version of GeoDeepDive.

3.2 Aspect 2: Simpler Feature Engineering
The second aspect shows how simple Python and SQL

code can be used to enable statistical processing using our
back-end system, described in Section 2.2. SIGMOD atten-
dees will write new extractors by themselves on site. The
interaction will be based on real GeoDeepDive errors that
are discovered by SIGMOD attendees. For example:

1. We browse the system and find some errors made by
GeoDeepDive. For example, in the location entity
linking task, we may find that GeoDeepDive mistak-
enly links the word“Madison”to“Madison, Wisconsin”
instead of “Madison, Alabama,” although the whole
sentence refers to “Alabama.” These errors happen
in the query relation EntityLinking(mid, eid), which
contains, for each mention, the entity it refers to.

2. We come up with a heuristic to fix these errors. In
the Madison example, one possible heuristic is Detect
State/County in the same sentence, and use them to
guide location entity linking.

3. We write feature extractors using Python to generate
new feature relations. In the Madison example, we first
write a Python function (<10 lines) to produce a re-
lation ContainedIn(eid1, eid2). A tuple (eid1, eid2) ∈
ContainedIn if entity eid1 is contained in entity eid2
(e.g., Madison and Wisconsin). We will also reuse a
feature relation called ELC(mid, sent, eid), which con-
tains, for each mention, its sentence ID and the candi-
date entity that it refers to.

4. We write an SQL query to integrate our heuristic.
SELECT elc1.mid, elc1.eid

FROM ELC elc1, ELC elc2, ContainedIn c

WHERE elc1.eid=c.eid1 AND elc2.eid=c.eid2

AND elc1.sent=elc2.sent;

Given this input, GeoDeepDive automatically runs statis-
tical learning to learn the weight, and runs statistical infer-

ence to produce a new instance of GeoDeepDive. We will
see this error fixed in our updated instance.

3.3 Aspect 3: Different Sources of Feedback
The third aspect demonstrates that taking different types

of feedback leads to the high quality of GeoDeepDive. SIG-
MOD attendees will see how each type of feedback affects
various quality metrics.

We provide a slider for each type of feedback, such as (1)
number of human expert labels, (2) number of crowd source
labels, (3) number of expert-provided rules, etc. By sliding
these sliders, SIGMOD attendees will see different instances
of GeoDeepDive, along with quality metrics like precision,
recall, etc. By comparing different instances intuitively, and
comparing quality numbers quantitatively, SIGMOD atten-
dees will get a sense of the relevant impact of each type of
feedback. For example, if we decrease the number of expert-
provided rules, the precision of the top-200 extractions for
temporal interval attachment decreases from 80% to 12%.

4. CONCLUSION
This demonstration describes GeoDeepDive, our prelim-

inary effort to help geoscientists discover knowledge that is
buried in geology journal articles. This problem requires us
to solve the problems of data acquisition, extraction, and
integration in a single framework. We show that it is possi-
ble to build such a system using familiar database process-
ing languages. We demonstrate this in GeoDeepDive by
showing that (1) an end-to-end system can be built with es-
sentially just these familiar tools, and (2) a simple feature
engineering system can be built using Python and SQL. We
show that these aspects can be accomplished using our re-
cent results to integrate statistical inference into traditional
data processing systems. Attendees will interactively see the
effect of different sources of feedback on quality.
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