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ABSTRACT

Factor graphs and Gibbs sampling are a popular combina-
tion for Bayesian statistical methods that are used to solve
diverse problems including insurance risk models, pricing
models, and information extraction. Given a fixed sam-
pling method and a fixed amount of time, an implementa-
tion of a sampler that achieves a higher throughput of sam-
ples will achieve a higher quality than a lower-throughput
sampler. We study how (and whether) traditional data
processing choices about materialization, page layout, and
buffer-replacement policy need to be changed to achieve
high-throughput Gibbs sampling for factor graphs that are
larger than main memory. We find that both new theo-
retical and new algorithmic techniques are required to un-
derstand the tradeoff space for each choice. On both real
and synthetic data, we demonstrate that traditional base-
line approaches may achieve two orders of magnitude lower
throughput than an optimal approach. For a handful of pop-
ular tasks across several storage backends, including HBase
and traditional unix files, we show that our simple proto-
type achieves competitive (and sometimes better) through-
put compared to specialized state-of-the-art approaches on
factor graphs that are larger than main memory.

Categories and Subject Descriptors

H.2.4 [Information Systems]: Database Management; H.3.2
[Information System]: Information Storage and Retrieval—
Information Storage

General Terms

Experimentation, Performance
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1. INTRODUCTION
Factor graphs capture and unify a range of data-driven sta-

tistical tasks in information extraction, text analytics, pre-
dictive analytics, and pricing and actuarial models that are
used across many industries. For example, conditional ran-
dom fields (CRF) are factor graphs that are used in industry
for information extraction [22,42,43], e.g., Microsoft’s Enti-
tyCube [46] and HP’s IsWiki [9]. Moody’s rating service uses
Gibbs sampling and generalized linear models (GLMs) [39],
as do leading insurance actuaries [4, 13]. Increasingly, more
sophisticated factor graph models are used. For example,
Yahoo! and Google use latent Dirichlet allocation (LDA)
for topic modeling [8, 23, 38], and Microsoft’s EntityCube
uses Markov logic [12,28,36,46]. Most inference or parame-
ter estimation problems for factor graphs are intractable to
solve exactly, e.g., segmenting a sentence using a skip-chain
CRF, inverting the parameters of a GLM to estimate the
risk of an actuarial model, or computing the parameters of
an LDA model. To perform these tasks, one often resorts to
sampling. Arguably the most popular of these approaches,
and the one on which we focus, is Gibbs sampling [34].

Not surprisingly, frameworks that combine factor graphs
and Gibbs sampling are popular and widely used. For exam-
ple, the OpenBUGS framework has been used widely since
the 1980s [25]. More recent examples include PGibbs [15]
and Factorie [26]. For any factor graph, given a fixed time
budget, an implementation of Gibbs sampling that produces
samples at a higher throughput, achieves higher-quality re-
sults. Thus, a key technical challenge is to create an imple-
mentation of high-throughput Gibbs samplers.

Achieving high throughput for Gibbs sampling is well stud-
ied for factor graphs that fit in main memory, but there is
a race to apply these approaches to larger amounts of data,
e.g., in defense and intelligence [27], enterprise [17], and web
applications [38].

A key pain point is that for each specific model, a scalable
implementation is hand tuned, e.g., Greenplum’s MADlib [17]
and Yahoo! [38] implement hand-tuned versions of LDA.
High-performance implementations of Gibbs sampling often
require a tedious process of trial-and-error optimization. Fur-
ther complicating an engineer’s job is that the variety of stor-
age backends has exploded in the last few years: traditional
files, relational databases, and HDFS-based key-value stores,
like HBase or Accumulo. The lack of scalable Gibbs sam-
plers forces developers to revisit I/O tradeoffs for each new
statistical model and each new data storage combination.
We first show that a baseline approach that picks classically



Figure 1: System overview. (a) The input to our system is a factor graph encoded in correlation relations
(see Section 2). (b) Factor graphs are stored using several secondary storage backends, e.g., traditional unix
file and HBase. (c) Gibbs sampling is performed. Our prototype loads only a portion of the factor graph
into main memory, runs inference, and updates the state, which may be stored on secondary storage. (d) As
is standard, these samples are summarized for use in the above applications.

optimal points in this tradeoff space may lose almost two
orders of magnitude in throughput (see Figures 11 and 14).

We select three classical techniques that are used to im-
prove query performance in database storage managers: ma-
terialization, page-oriented layout, and buffer-replacement
policy. These techniques are simple to implement (so they
may be implemented in practice), and they have stood the
test of four decades of use.1 Our study examines these
techniques for a handful of popular storage backends: main-
memory based, traditional unix files, and key-value stores.

Applying these classical techniques is not as straightfor-
ward as one may think. The tradeoff space for each tech-
nique has changed due to at least one of two new character-
istics of sampling algorithms (versus join data processing):
(1) data are mutable during processing (in contrast to a typ-
ical join algorithm), and (2) data are repeatedly accessed
in an order that changes randomly across executions, which
means that we cannot precompute an ideal order. However,
within any given sampling session, the data is accessed in
a fixed order. We consider the tradeoff space analytically,
and use our analysis of the tradeoff space to design a simple
proof-of-concept storage manager. We use this storage man-
ager to validate our claimed tradeoff space in scaling Gibbs
sampling.

As we show through experiments, our prototype system
is competitive with even state-of-the-art, hand-tuned ap-
proaches for factor graphs that are larger than main memory.
Thus, it is possible to achieve competitive performance using
this handful of classical techniques.

Overview of Technical Contributions

In Section 2, we describe a representation of factor graphs
that follows the work of Sen et al. [37] and Wick et al. [44].2

We give a brief primer on factor graphs to provide context

1Although sampling approaches have been integrated with
data processing systems, notably the MCDB project [20],
the above techniques have not been applied to the area of
high-throughput samplers.
2A minor difference is that we do not require, as Sen et
al. [37] or PGibbs does, that one explicitly list the complete
truth table for every factor (see Section 5).

for our contributions, which we discuss at the end of this
section.

A Primer of Gibbs Sampling on Factor Graphs. The
input to Gibbs sampling is a factor graph, which is a la-
beled bipartite graph G = (X,Y,E) where X and Y are
sets of nodes and E ⊆ X × Y is a set of edges (illustrated
in Figure 1). In a factor graph, X contains one node for
each random variable, which is labeled with the current as-
signment to that variable, and Y contains a node for each
factor. The factors define the correlation structure between
the variables: two variables are connected to the same fac-
tor if they are correlated. A factor function is associated
with each factor and numerically describes how sets of vari-
ables that are related by a factor are correlated. E describes
which variables are associated with which factors.

The output of sampling is one or more samples for each
variable in the factor graph. To obtain a sample for a single
variable x, we perform three steps: (1) retrieve all neigh-
boring factors and the assignments for all variables in those
factors, (2) evaluate these neighboring factors with the re-
trieved assignments, and (3) aggregate the evaluation results
to compute a conditional distribution from which we select
a new value for x. This operation, which we call the core
operation, is repeated for every variable in the factor graph
(in a randomly selected order). We loop over the variables
many times to obtain a high-quality sample.

Technical Contributions. Since the bulk (often over 99%)
of the execution time is spent in the core operation, we
focus on optimizing this operation. To this end, we iden-
tify three tradeoffs for the core operation of Gibbs sampling:
(1) materialization, (2) page-oriented layout, and (3) buffer-
replacement policy.

(1) Materialization tradeoffs. During Gibbs sampling,
we access the bipartite graph structure many times. An ob-
vious optimization is to materialize a portion of the graph to
avoid repeated accesses. A twist is that the value of a ran-
dom variable is updated during the core operation. Thus,
materialization schemes that introduce redundancy may re-



Method Comment

void init(D[] vars)
initialize this factor with a
list of variable IDs

float evaluate() evaluate the value of this fac-
tor

Figure 2: Interface for a factor function. Variable
assignments are globally accessible.

quire many (random) writes. This introduces a new cost
in materialization schemes, and so we re-explore lazy and
eager materialization schemes, along with two co-clustering
schemes [33, ch. 16]. The two co-clustering schemes together
analytically and empirically dominate both eager and lazy
schemes – but neither dominates the other. Thus, we de-
sign a simple optimizer based on statistics from the data to
choose between these two approaches.

(2) Page-oriented layout. Once we have decided how
to materialize or co-cluster, we are still free to assign vari-
ables and factors to pages to minimize the number of page
fetches from the storage manager during the core operation.
In cases in which the sampling is I/O bound, minimizing the
number of page fetches helps reduce this bottleneck. Since
Gibbs sampling proceeds through the variables in a random
order, we want a layout that has good average-case perfor-
mance. Toward this goal, we describe a simple heuristic
that outperforms a näıve random layout by up to an order
of magnitude. We then show that extending this heuristic is
difficult: assuming P 6= NP, no polynomial time algorithm
has a constant-factor approximation for the layout that min-
imizes page fetches during execution.

(3) Buffer-Replacement Policy. A key issue, when
dealing with data that is larger than available main mem-
ory, is deciding which data to retain and which to discard
from main memory, i.e., the buffer-replacement policy. Al-
though the data is visited in random order, one will typically
perform many passes over the data in the same random or-
der. Thus, after the first pass over the data, we have a
great deal of information about which pages will be selected
during execution. It turns out that this enables us to use
a classical result from Bélády in 1966 [7] to define a theo-
retically optimal eviction strategy: evict the item that will
be used latest in the future. We implement this approach
and show that it performs optimally, but that its improve-
ment over more traditional strategies based on MRU/LRU
is only 5–10%. It also requires some non-trivial implemen-
tation, and so it may be too complex for the performance
gain. A technical serendipity is that we use Bélády’s re-
sult to characterize an optimal buffer-replacement strategy,
which is needed to establish our hardness result described in
page-oriented layout.

We present background information on factor graphs and
Gibbs sampling in Section 2, our technical contributions in
Section 3, and an empirical validation in Section 4. We
discuss related work in Section 5 and conclude in Section 6.

2. BACKGROUND
We describe factor graphs, the mechanics of Gibbs sam-

pling, and how Gibbs sampling supports inference and query
answering.

2.1 Factor Graphs
Factor graphs have been used to model complex correla-

tions among random variables for decades [41], and have
recently been adopted as one underlying representation for
probabilistic databases [37,42,44]. A key principle of factor
graphs is that random variables should be separated from
the correlation structure. Following this principle, we define
a probabilistic database to be D = (R,F), where R is called
the user schema and F is called the correlation schema. Re-
lations in the user schema (resp. correlation schema) are
called user relations (resp. correlation relations). A user’s
application interacts with the user schema, while the corre-
lation schema captures correlations among tuples in the user
schema. Figure 3 gives a schematic view of the concepts in
this section.

User Schema. Each tuple in a user relation Ri ∈ R has
a unique tuple ID, which takes values from a variable ID
domain D, and is associated with a random variable3 taking
values from a variable value domain V. We assume that V is
discrete (e.g., Boolean).4 Each distinct variable assignment
σ : D 7→ V defines a possible world Iσ that is equivalent to a
standard database instantiation of the user schema.

Correlation Schema. The correlation schema defines a prob-
ability distribution over the possible worlds as follows. Intu-
itively, each correlation relation Fj ∈ F represents one type
of correlation over the random variables in D by specifying
which variables are correlated and how they are correlated.
To specify which, the schema of Fj has the form Fj(fid, v̄)
where fid is a unique factor ID taking values from a fac-
tor ID domain F, and v̄ ∈ D

aj where aj is the number of
random variables that are correlated by each factor.5 In
Figure 3, variables v1 and v4 are correlated. To specify how,
Fj is associated with a function fj : Vaj 7→ R+. Given a
possible world Iσ, for any t = (fid, v1, . . . , vaj

) ∈ Fj , de-
fine gj(t, Iσ) = fj(σ(v1), . . . , σ(vaj

)). Define vars(fid) =
{v1, . . . , vaj

}. To explain independence in the graph, we
need the notion of the Markov blanket [30, 41] of a variable
v, denoted mb(v), and defined to be

mb(vi) = {v | v 6= vi, ∃fid ∈ F s.t. {v, vi} ⊆ vars(fid)}.

In Figure 3, mb(v1) = {v2, v4}. In general, a variable v is
conditionally independent of a variable v′ 6∈ mb(v) given
mb(v). Here, v1 is independent of v3 given {v2, v4}.

To specify a factor function in our prototype, the user
implements the C++ interface in Figure 2.6

Probability Distribution. Denote by I the set of all possi-
ble worlds. Define the partition function Z : I 7→ R+ over

3Either modeling the existence of a tuple (for Boolean vari-
ables) or in the form of a special attribute of Ri. The value
of a random variable may be fixed as input.
4We describe factor graphs over continuous variables in the
full version of this paper.
5Our representation supports factors with varying arity as
well, but we focus on fixed-arity factors for simplicity.
6Our infrastructure also accepts higher level languages, e.g.,
OpenBUGS or Markov Logic, but this compilation is orthog-
onal to our contributions.



Figure 3: An example factor graph that represents a simplified skip-chain CRF; more sophisticated versions
of this model are used in named-entity recognition and parsing. There is one user relation containing all
tokens, and there are two correlation relations for adjacent-token correlation (F1) and same-word correlation
(F2) respectively. The factor function associated to F1 (resp. F2), called f1 (resp. f2), is stored in a manner
similar to a user-defined function.

any possible world I ∈ I as

Z(I) =
∏

Fj∈F

∏

t∈Fj

gj(t, I) (1)

The probability of a possible world I ∈ I is

Pr[I ] = Z(I)

(

∑

J∈I

Z(J)

)−1

. (2)

We assume that
∑

J∈I
Z(J) > 0. It is well known that this

representation can encode all discrete probability distribu-
tions over possible worlds [6].

2.2 Inference and Query Answering
In a factor graph, which defines a probability distribution,

(marginal) inference refers to the process of computing the
probability that a random variable will take a particular
value. Marginal inference on factor graphs is a powerful
framework. Following Sen et al. [37], we can use it to sup-
port sophisticated query answering via a two-stage process:
(1) we first add a new user relation that describes the out-
put of the query, and (2) we add in correlation relations as
described by Sen et al.’s algorithm. This process creates a
new factor graph, on which we perform marginal inference.

Gibbs Sampling. As exact inference for factor graphs is in-
tractable, a commonly used inference approach is to sample,
and then use the samples to compute the marginal probabil-
ities of random variables (e.g., by averaging the outcomes).
The main idea of Gibbs sampling is as follows. We start with
a random possible world I0. For each variable v ∈ D, we sam-
ple a new value of v according to the conditional probability
Pr[v|mb(v)]. A routine calculation shows that computing
this probability requires that we retrieve the assignment to
the variables in mb(v) and the factor functions associated
with the factor nodes that neighbor v. Then we update v in
I0 to the new value. After scanning all variables, we obtain
a first sample I1. We repeat this process to generate Ik+1

from Ik.

Example We continue our example (see Figure 3) of ex-
tracting information by labeling each token in a sentence
using a skip-chain conditional random field [40], a type of

Figure 4: A step of Gibbs sampling. To sample a
variable v3, we read the current values of variables in
mb(v3) = {v2, v4} and calculate the conditional prob-
ability Pr[v3|v2, v4]. Here, the sample result is v3 = 1.
We update the value of v3 and then proceed to sam-
ple v4.

factor graphs used in named-entity recognition [14]. Fig-
ure 4 illustrates one step in Gibbs sampling to update a
single variable, v3: we compute the probability distribution
over v3 by retrieving factors c2 and c3, which determines
mb(v3). Then, we find the values of v2 and v4. Using Equa-
tion 2, one can check that the probability that v3 = 1 is
given by the equation in Figure 4 (conditioned on mb(v3),
the remaining factors cancel out).

There are several popular optimization techniques for Gibbs
sampling that we implement in our prototype. One class
of techniques improves the sample quality, e.g., burn-in, in
which we discard the first few samples, and thinning, in
which we retain every kth sample for some integer k [3].
A second class of techniques improves throughput using par-
allelism. The key observation is that variables that do not
share factors may be sampled independently and so in par-
allel [45]. These techniques are essentially orthogonal to our
contributions, and we do not discuss them further.



3. STORAGE-MANAGER TRADEOFFS TO

SCALE GIBBS SAMPLING
We show that Gibbs sampling essentially performs joins

and updates on a view over several base relations that rep-
resent the factor graph. Thus, we can apply classical data
management techniques (such as view materialization, page-
oriented layout, and buffer-replacement policy) to achieve
scalability and high I/O efficiency.

3.1 Gibbs Sampling as a View
Given a database with a user schema and correlation schema

as defined in the previous section, we define two simple re-
lations that represent the edge relation of the factor graph
and the sampled possible world:

E(v, f) = {(v, f)|f ∈ F, v ∈ vars(f)} and A(v, a) ⊆ D× V

In Figure 3, E encodes the bipartite graph and each tuple
in A corresponds to a possible assignment of a label of a
variable. Note that each variable is assigned a single value
(so v is a key of A) and A will be modified during Gibbs
sampling.

The following view describes the input factor graph for
Gibbs sampling:

Q(v, f, v′, a′)← E(v, f), E(v′, f), A(v′, a′), v 6= v
′
.

When running Gibbs sampling, we group Q by the first field
v. Notice that the corresponding group of tuples in Q con-
tains all variables in the Markov blanket mb(v) along with
all the factor IDs incident to v. This is all the information
we need to generate a sample. For each group, correspond-
ing to a variable v, we sample a new value (denoted by a)
for v according to the conditional probability Pr[v|mb(v)].
The twist is that after we obtain a, we must update A before
we proceed to the next variable to be sampled. In our im-
plementation, we proceed through the groups in a random
order.7

After one pass through Q, we obtain a new possible world
(represented by A). We repeat this process to obtain multi-
ple samples. By counting the number of occurrences of an
event, e.g., a variable taking a particular value, we can use
these samples to perform marginal inference.

We describe how we optimize the data access to Q using
classical data management techniques such as view materi-
alization and page-oriented layout. To study these tradeoffs,
we implement a simple storage system. We store E and
A using slotted pages [33, ch. 16] and a single-pool buffer
manager.8

3.2 Materializing the Factor Graph
The view Q involves a three-way join. All join operators

perform an index nested-loop join (see Figure 6) with a small
twist: the join keys are also record IDs, hence we do not need
to perform an actual index look-up to find the appropriate

7Our strategy is independent of the order. The order, how-
ever, empirically does change the convergence rate, and it is
future work to understand the tradeoff of order and conver-
gence.
8We use variable and factor IDs as record IDs, and so can
look up the column v or f in both E and A using one random
access (similar to RID lists [33, ch. 16]).

Reads Writes
Storage

from A from E A

Lazy |mb(v)| dv 1 O(|E|+ |A|)
V-CoC |mb(v)| 0 1 O(

∑
v |mb(v)| + |A|)

F-CoC 0 dv dv O(|E|)
Eager 0 0 |mb(v)| O(

∑
v |mb(v)|)

Figure 5: I/O costs for sampling one variable under
different materialization strategies. For a variable v,
dv is the number of factors in which v participates.
Reads (resp. writes) are random reads (resp. ran-
dom writes). The cost for each strategy is the total
number of reads and writes.

Figure 6: Strategies V-CoC and F-CoC.

page. We examine materialization strategies to improve the
performance of these joins.9

Materialization can reduce the number of random reads.
However, a key twist is that the base relation A is updated
after we examine each group. Thus, if we replicate A we
could incur many random writes. We study this tradeoff by
comparing four different materialization strategies in terms
of random read/write costs and space requirements (see Fig-
ure 5).

• Lazy: we only materialize base tables. This strategy
incurs the most random reads for on-the-fly joins, but
the fewest random writes.
• V-CoC: we co-cluster on the variable side

QV (v, f, v′)← E(v, f), E(v′, f), v 6= v
′

Compared to the lazy strategy, this strategy eliminates
random reads on E and retains a single copy of A.
• F-CoC: we co-cluster on the factor side

QF (f, v′, a)← E(v′, f), A(v′, a)

Compared to the lazy strategy, this strategy eliminates
random reads on A at the cost of more random writes
to update A within QF .

• Eager: we eagerly materialize Q. This strategy elim-
inates all random reads at the cost of high random
writes during the core operation.

Figure 6 illustrates the two co-clustering strategies.

9Since we run many iterations of Gibbs sampling, the con-
struction cost of materialized views is often smaller than the
cost of running Gibbs sampling in all strategies. (In all of
our experiments, the construction cost is less than 25% of
the total run time.)



From Figure 5, we can see that V-CoC dominates Lazy
and F-CoC dominates Eager in terms of random accesses
(Assuming each factor contains at least two variables,
|mb(v)| ≥ 2dv). Our experiments confirm these analytic
models (see Section 4.3). Therefore, our system selects be-
tween V-CoC and F-CoC. To determine which approach to
use, our system selects the materialization strategy with the
smallest random I/O cost according to our cost model.

3.3 Page-oriented Layout
With either V-CoC or F-CoC, Q is an index nested-loop

join between one relation clustered on variables and another
relation clustered on factors. How the data are organized
into pages impacts I/O efficiency in any environment.

We formalize the problem of page-oriented layout for Gibbs
sampling as follows, GLayout. The input to the prob-
lem is a tuple (V, F,E, µ, S, P ) where (V, F,E) define a fac-
tor graph; that is, V = {v1, . . . , vN} is a set of variables,
F = {f1, . . . , fM} is the set of factors, and E = {(v, f) | v ∈
vars(f)} defines the edge relation. The order µ is a total
order on the variables, V , which captures the fact that at
each iteration of Gibbs sampling, one scans the variables in
V in a random order, and S the page size (i.e., the maximum
number of variables or factors a page can store), and P the
set of pages.

Any solution for GLayout is a tuple (α, β, π) where α :
V 7→ P (resp. β : F 7→ P ) map variables (resp. factors) to
pages. The order π = (e1, . . . , eL) defines the order of edges
that the algorithm visits. That is, given a fixed variable visit
order µ = (v1, . . . , vN ), we only consider tuple orders π that
respect µ; we denote this set of orders as Π(µ).10

As we will see, it is possible in Gibbs sampling to construct
an optimal page eviction strategy. For the moment, to sim-
plify our presentation, we assume that there are only two
buffer pages: one for variables and one for factors. We re-
turn to this point later. Then any ordering π = (e1, . . . , eL)
would incur an I/O cost (for fetching factors from disk):

cost(π, β) = 1 +
L
∑

i=2

I [β(ei.f) 6= β(ei−1.f)]

The goal is to find an ordering π ∈ Π(µ) and mapping β
that minimizes the above I/O cost.

Algorithm. We use the following simple heuristic to con-
struct (α, β, π) ordering F : we sort the factors in F in dic-
tionary order by µ, that is, by the position of the earliest
variable that occurs in a given factor. We then greedily pack
F -tuples onto disk pages in this order. We show empirically
that this layout has one order of magnitude improvement
over randomly ordering and paging tuples.

Analysis. Extending this heuristic for better performance
is theoretically challenging:

Proposition 3.1. Assuming P6=NP, an algorithm does
not exist that runs in polynomial time to find the optimal
solution to GLayout. More strongly, assuming P6=NP, no
polynomial time algorithm can even guarantee a constant
approximation factor for cost.

10Π(µ) = {π = (e1, . . . , eL) | ∀i, j.1 ≤ i ≤ j ≤ L, ei.v �µ

ej .v}, where x �µ y indicates that x precedes y in µ.

We prove this proposition by encoding the multi-cut par-
tition problem [2]. Under slightly more strict complexity
assumptions (about randomized complexity classes), it also
follows that getting a good layout on average is computa-
tionally difficult.

Multi-page Buffer. We return to the issue of more than
two buffer pages. Since variables are accessed sequentially,
MRU is optimal for the variable pages. One could worry
that the additional number of buffer pages could be used
intelligently to lower the cost. We show that we are able
to reduce the multiple-page buffer case to the two-page case
(and so an approximation result similar to Proposition 3.1);
intuitively, given the instance generated for the two-buffer
case, we include extra factors whose role in the reduction
is to ensure that any optimal buffering strategy essentially
incurs I/O only on the sequence of buffer pages that it would
in the two-buffer case. Our proof examines the set of pages
in Bélády’s [7] optimal strategy, which we describe in the
next section.

3.4 Buffer-Replacement Policy
When a data set does not fit in main memory, we must

choose which page to evict from main memory. A key twist
here is that we will be going over the same data set many
times. After the first pass, we know the full reference se-
quence for the remainder of the execution. This enables us
to use a classical result from Bélády in the 1960s [7] to define
a theoretically optimal eviction strategy: evict the item that
will be used latest in the future.

Recall that we scan variables in sequential order, so MRU
is optimal for those pages. However, the factor pages require
a bit more care. On the first pass of the data, we store the
entire reference sequence of factors in a file, i.e., sequence
fi1 , fi2 , . . . , lists each factor. For each reference, we then
do a pass over this log to compute when each factor is used
next in the sequence. At the end of the first scan, we have a
log that consists of pairs of factor IDs and when each factor
appears next. The resulting file may be several GB in size.
However, during the subsequent passes, we only need the
head of this log in main memory. We use this information
to maintain, for each frame in the buffer manager, when that
frame will be used next.

In our experiments, we evaluate under what situations
this optimal strategy is worth the extra overhead. We find
that the optimal strategy is close to the standard LRU in
terms of run time–even if we allow the potentially unfair
advantage of holding the entire reference sequence in main
memory. In both cases, the number of page faults is roughly
5%–10% smaller using the optimal approach. However, we
found that simple schemes based on MRU/LRU are essen-
tially optimal in two tasks (called LR and CRF in the next
section), and in the third task (called LDA in the next sec-
tion) the variables share factors that are far apart, and so
even the optimal strategy cannot mitigate all random I/O.

4. EXPERIMENTS
We validate that (1) our system is able to scale to fac-

tor graphs that are larger than main memory, and (2) for
inference on factor graphs that are larger than main mem-
ory, we achieve throughput that is competitive with special-
ized approaches. We then validate the details of our techni-
cal claims about materialization, page-oriented layout, and



Systems LR CRF LDA Storage Parallelism
Elementary X X X Multiple Multi-thread
Factorie X X X RAM Single-thread
PGibbs X X X RAM Multi-thread

OpenBUGS X X RAM Single-thread
MADlib X Database Multi-thread

Figure 7: Key features of each system that imple-
ments Gibbs sampling. OpenBUGS and MADlib
do not support skip-chain CRFs. MADlib supports
LR but not a full Bayesian (sampling) treatment; its
support for LDA is via specialized UDFs.

buffer-replacement policy that we described in the previous
section.

4.1 Experimental Setup
We run experiments on three popular statistical models:

1) logistic regression (LR), 2) skip-chain conditional ran-
dom field [40] (CRF), and 3) latent Dirichlet allocation
(LDA) 11. We use LR and CRF for text chunking, and
LDA for topic modeling. We select LR because it can be
solved exactly and so can be used as a simple benchmark.
We select CRF as it is widely used in text-related applica-
tions and inference is often performed with Gibbs sampling,
and LDA as it is intuitively the most challenging model that
is supported by all systems in our experiments.

Data Sets. To compare the quality and efficiency with other
systems, we use public data sets that we call Bench. We run
LR and CRF on CoNLL12 and LDA on AP.13 For scalabil-
ity experiments and tradeoff efficiency experiments, we scale
up Bench from 1x to 100,000x by adding more documents
which are randomly selected from a one-day web crawl (5M
documents, 400GB). We call the 1,000x data set Perf and
the 100,000x data set Scale. Figure 8 shows the number of
variables, factors, and size for each data set.

Metrics. We use two metrics to measure the quality: (1) the
F1 score of the final result for data sets with ground truth
(when ground truth is available) and (2) the squared loss [44]
between the marginal probabilities that are the output of
each sampling system and a gold standard on each data set
(when there is no ground truth). For LR, we compute the
gold standard using exact inference. For CRF and LDA,
it is intractable to compute the exact distribution; and the
standard approach is to use the results from Gibbs sampling
after running many iterations beyond convergence [44]. In
particular, we get an approximate gold standard for both
CRF and LDA on Bench by running Gibbs sampling for
10M iterations. For efficiency, we measure the throughput as
the number of samples produced by a system per second.

11As shown in the full version of this paper, following
MADLib [17], we incrementally maintain the evaluation re-
sult of LDA factors with regard to changes of variable assign-
ment. We implement this by attaching a fixed-size memory
area to each factor. All tradeoffs, i.e., materialization, page-
oriented layout, and buffer-replacement policy, still apply to
this case.

12http://www.cnts.ua.ac.be/conll2000/chunking/
13http://www.cs.princeton.edu/~blei/lda-c/

Setting Name Page Size Buffer Size
Sp/Sb 4KB 40KB
Lp/Sb 4MB 40MB
Sp/Lb 4KB 4GB
Lp/Lb 4MB 4GB

Lp/MAXb 4MB 40GB

Figure 9: Different configuration settings of Elemen-
tary. Sp (resp. Lp) means small (resp. large) page
size; Sb (resp. Lb) means small (resp. large) buffer-
size.

Competitor Systems. We compare our system with four
state-of-the-art Gibbs sampling systems: (1) PGibbs on
GraphLab [15], (2) Factorie [26], and (3) OpenBUGS [25],
which are main memory systems, and MADlib [17], a
scalable in-database implementation of LDA. PGibbs and
MADlib14 are implemented using C++, OpenBUGS is im-
plemented using Pascal and C, and Factorie is implemented
using Java. We use Greenplum 4.2.1.0 for MADlib. The
key features of each system are shown in Figure 7. For each
model (i.e., LR,CRF, and LDA), all systems take the same
factor graph as their input. We modify each system to out-
put squared loss after each iteration, and we do not count
this time as part of the execution time.

Details of our Prototype. We call our prototype system
Elementary, and compare three variants of our system by
plugging in different storage backends: EleMM, EleFILE,
and EleHBASE. We use main memory, traditional unix
files, and HBase, respectively, for these three variants. El-
eMM is used to compare with other main memory systems.
EleFILE and EleHBASE use different secondary storage
and are used to validate scalability and I/O tradeoffs.

Our system is implemented using C++ and bypasses the
OS disk-page cache to support its own buffer manager. We
compile all C++ code using GCC 4.7.2 and all Java code
using Java 1.7u4. All experiments are run on a RHEL6.1
workstation with two 2.67GHz Intel Xeon CPUs (12 cores,
24 hyper-threaded), 128GB of RAM, and 12×2TB RAID0
drives. All data and temporary files are stored on a RAID,
and all software is installed on a separate disk. We use the
latest HBase-0.94.1 on a single machine15 and follow best
practices to tune HBase.16

We use various page-size/buffer-size combinations, as shown
in Figure 9. These configuration settings correspond to
small/large page sizes and small/large buffer sizes. We ex-
plore more settings in the full version, but the high-level con-
clusions are similar to these four settings so we omit those
results. The Lp/MAXb setting is used for end-to-end ex-
periments.

4.2 End-to-end Efficiency and Scalability
We validate that our system achieves state-of-the-art qual-

ity by demonstrating that it converges to the gold-standard
probability distribution on each task. We then compare our

14http://doc.madlib.net/v0.3/group__grp__plda.html
15Our system can use HBase on multiple machines to get even
higher scalability. We only discuss the one-machine case to
be fair to other systems.

16http://hbase.apache.org/book/performance.html



Models
Bench (1x) Perf (1,000x) Scale (100,000x)
|V | |F | Size |V | |F | Size |V | |F | Size

LR 47K 47K 2MB 47M 47M 2GB 5B 5B 0.19TB
CRF 47K 94K 3MB 47M 94M 3GB 5B 9B 0.3TB
LDA 0.4M 12K 10M 0.4B 10M 9GB 39B 0.2B 0.9TB

Figure 8: Data sets sizes. We omit the 10x, 100x, and 10,000x cases from this table.

# thread = 1 # threads = 20
LR CRF LDA LR CRF LDA

EleMM 24 18 12 12x 9x 6x
EleFILE 34 24 33 9x 6x 4x

EleHBASE 101 70 92 9x 7x 4x
PGibbs 38 42 CRASH 9x 5x CRASH
MADLib N/A N/A 17 N/A N/A 8x
Factorie 95 120 6 N/A N/A N/A

OpenBUGS 150 N/A CRASH N/A N/A N/A

Figure 10: The time in seconds (speedup for 20-threads case) needed to achieve squared loss below 0.01 for
Bench data set. N/A means that the task is not supported.

system’s efficiency and scalability with that of our competi-
tors.

Quality. We validate that our system converges to the gold-
standard probability distribution on several tasks. We run
all systems on Bench using the configuration Lp/MAXb.
We take a snapshot after each system produces a sample;
we output the squared loss and F1 score of that snapshot.
Figure 10 shows the time that each system needs to converge
to a solution with a squared loss less than 0.01. We chose
0.01 since a smaller loss does not improve the F1 score, i.e.,
when the loss is less than 0.01, LR converges to F1=0.79
and CRF to F1=0.81, which are the gold-standard values
for these tasks. This validates that all systems achieve the
same quality, and thus a more interesting question is to un-
derstand the rate at which they achieve the quality.

Efficiency. To understand the rate at which a system
achieves the gold-standard quality, we run PGibbs, MADlib,
Factorie, and OpenBUGS and measure when they are within
0.01 of the optimal loss. If a system can take advantage of
multi-threading, we also run it with 20 threads and report
the speedup factor compared with one thread. We chose
our materialization strategy to be consistent with what is
hard coded in state-of-the-art competitors, i.e., V-CoC for
LR and CRF, and F-CoC for LDA. Figure 10 shows the
results.

When there is 1-thread and all the data fit in main mem-
ory, we observe that all systems converge to gold-standard
probability distribution within roughly comparable times.
This is likely due to the fact that main memory Gibbs sam-
pling uses a set of well-known techniques, which are widely
implemented. There are, however, some minor differences
in runtime. On LR and CRF, EleMM has comparable ef-
ficiency to PGibbs, but is slightly faster. After reviewing
PGibbs’ code, we believe the efficiency difference (<2x) is
caused by the performance overhead of PGibbs explicitly
representing factor functions as a table. For LR and CRF,
EleMM is 4–10x faster than Factorie, and we believe that
this is because Factorie is written in Java (not C++). Open-
BUGS is more than one order of magnitude slower than El-

eMM. This difference in OpenBUGS is due to the inefficiency
in how it records the samples of each variable. PGibbs re-
quires explicit enumeration of all outcomes for each factor,
and so the input size to PGibbs is exponential in the size of
the largest factor. As LDA involves factors with hundreds
or more variables, we could not run LDA on PGibbs. Open-
BUGS crashed on LDA while compiling the model and data
with the error message “illegal memory read.” Elementary
with secondary storage backends has similar performance
trends, but is overall 2–5x slower than EleMM, due to the
overhead of I/O.

For 20-thread cases, we observe speedups for all multi-
threading systems. EleFILE and EleHBASE gets smaller
speedups compared with EleMM because of the overhead
of I/O requests. PGibbs also gets slightly smaller speedups
than EleMM, and we believe that this marginal difference is
caused by the overhead of MPI, which is used by PGibbs.

Scalability. We validate that our system can scale to larger
data sets by using secondary storage backends. We run all
systems on data sets scaling from 1x (Bench) to 100,000x
(Scale) using one thread and Lp/MAXb. We let each sys-
tem run for 24 hours and stop it afterwards. Figure 11 shows
the results for LR and LDA.17 We also run a baseline sys-
tem, Baseline, that uses the file system as storage and dis-
ables all of our optimizations (lazy materialization, and no
buffer management).

Not surprisingly, only systems that use secondary stor-
age backends, i.e., EleFILE, EleHBASE, and MADlib (only
for LDA), scale to the largest data sets; in contrast, main
memory systems crash or thrash at scaling factors of 10x
or more. As the core operation is scan based, it also not
surprising that each system scales up almost linearly (if it is
able to run).

However, the performance of the various approaches can
be quite different. The Baseline system is three orders of
magnitude slower than EleMM (it does not finish the first
iteration within 24 hours on the 100x scale factor). This
shows that buffer management is crucial to implementing an

17CRF is similar to LR, we include it in the full version.



Figure 11: Scalability of Different Systems.

Model A E QV QF Q
LR 0.18 1.4 1.4 1.4 1.4
CRF 0.18 2.0 3.2 2.0 3.2
LDA 1.66 9.0 100T+ 9.0 100T+

Figure 12: Size of intermediate state in Perf dataset
(see Sec. 3). All sizes in GB, except where noted.

Figure 13: Accuracy of the cost model of different
materialization strategies.

I/O-efficient Gibbs sampler. Due to higher I/O overheads,
EleHBASE is 3x slower than EleFILE.

MADlib uses PostgreSQL as the storage backend, and is
2x faster than EleFILE. However, MADlib uses an approx-
imate sampler for LDA, while our system implements an
exact sampler. If we allow EleFILE to run this approximate
sampler, EleFILE is between 10-20% faster.

4.3 I/O tradeoffs
We validate that both the materialization tradeoff and the

page-oriented layout tradeoff in Section 3 affect the through-
put of Gibbs sampling on factor graphs that are larger than
main memory, while the buffer-replacement tradeoff only has
a marginal impact. We also validate that we can automat-
ically select near-optimal strategies based on our I/O cost
model.

View Materialization. We validate that (1) the co-clustering
strategies that we explored in Section 3 outperform both
Lazy and Eager strategies, and (2) neither of the co-clustering
strategies dominates the other. We compare the four mate-
rialization strategies; our GLayout heuristic page-oriented

layout is used in all settings. We report results for both
EleFILE and EleHBASE on CRF and LDA.

As shown in Figure 14(a), for CRF, V-CoC dominates
other strategies for all settings. We looked into the buffer
manager; we found that (1) V-CoC outperforms Lazy (resp.
F-CoC) by incurring 75% fewer read misses on Sp/Sb (resp.
Sp/Lb); and (2) V-CoC incurs 20% fewer dirty page writes
than Eager. The situation, however, is reversed in LDA.
Here, F-CoC dominates, as both V-CoC and Eager fail to
run LDA as they would require 100TB+ of disk space for
materialization. Thus, neither co-clustering strategy domi-
nates the other, but one always dominates both Eager and
Lazy. The same observation holds for both EleFILE and
EleHBASE.

A key difference between these tasks is that the number
of variables in most factors in LDA is much larger (can be
larger than 1,000) than LR and CRF (fewer than 3). Thus,
some pre-materialization strategies are expensive in LDA.
On the other hand, for LR and CRF, the time needed to
look up factors is the bottleneck (which is optimized by V-
CoC).

We then validate that one can automatically select be-
tween different materialization strategies by using the cost
model shown in Figure 5. For each model and materializa-
tion strategy, we estimated the throughput as the inverse of
the estimated total amount of I/O. For each materialization
strategy, we plot its estimated and actual throughput. Fig-
ure 13 shows the results for EleFILE (Sp/Lb). We can see
that the throughput decreases when the estimated through-
put decreases. Based on this cost model, we can select the
near-optimal materialization strategy.

Page-oriented Layout. We validate that our heuristic or-
dering strategy can improve sampling throughput over a
random ordering. We focus on the F-CoC materialization
strategy here, and report the V-CoC setting in the full ver-
sion because the results are similar. We compare two page-
oriented layout strategies: (1) Shuffle, in which we ran-
domly shuffle the factor table, and (2) Greedy, which use
our greedy heuristic to layout the factor table. As shown in
Figure 14(b), Greedy dominates Shuffle on all data sets
in both settings. For CRF, the heuristic can achieve two
orders of magnitude of speedup. We found that for Sp/Lb,
heuristic ordering incurs two orders of magnitude fewer page
faults than random ordering. These results show that the
tradeoff in page-oriented layout impacts the throughput of
Gibbs sampling on factor graphs that do not fit in memory.



Figure 14: I/O tradeoffs on Perf dataset. Recall that Sp (resp. Lp) means small (resp. large) page size; Sb
(resp. Lb) means small (resp. large) buffer size. See Figure 9 for the exact definitions of page and buffer size
settings

Buffer-Replacement Policy. We validate that the optimal
buffer-replacement strategy can only achieve a marginal im-
provement of sampling throughput over LRU. We compare
three settings: (1) Optimal, which uses the optimal caching
strategy on tables with random access, (2) LRU, which
uses LRU on tables with random access; and (3) Random,
which uses a random replacement policy. We use MRU on
tables with sequential scan. We use V-CoC for LR and
CRF, F-CoC for LDA, and Greedy for all page-oriented
layouts because they are the optimal strategies for these
tasks. As shown in Figure 14(c), Optimal achieves 10%
higher throughput than Random for CRF, and 5% higher
throughput than LRU for LDA. For CRF, the access pat-
tern of factors is much like a sequence scan, and therefore
LRU is near-optimal. As Optimal requires non-trivial im-
plementation and is not implemented in existing data pro-
cessing systems, an engineer may opt against implementing
it in a production system.

Discussion. On this small set of popular tasks, our exper-
iments demonstrate that our prototype can achieve com-
petitive (and sometimes better) throughput and scalability
than state-of-the-art systems for Gibbs sampling from factor
graphs that are larger than main memory. What is interest-
ing to us about this result is that we used a set of generic
optimizations inspired by classical database techniques. Of
course, in any given problem, there may be problem-specific
optimizations that can dramatically improve throughput. For
example, in higher-level languages like MCDB or Factorie,
there may be additional optimization opportunities. Our
goal, however, is not to exhaustively enumerate such opti-
mizations; instead, we view the value of our work as artic-
ulating a handful of tradeoffs that may be used to improve

the throughput of either specialized or generic systems for
Gibbs sampling from factor graphs. These tradeoffs have
not been systematically studied in previous work. Also, our
techniques are orthogonal to optimizations that choose be-
tween various sampling methods to improve runtime perfor-
mance, e.g., Wang et al. [42]. A second orthogonal direction
is distributing the data to many machines; such an approach
would allow us to achieve higher scalability and performance.
We believe that the optimizations that we describe are still
useful in the distributed setting. However, there are new
tradeoffs that may need to be considered, e.g., communica-
tion and replication tradeoffs are obvious areas to explore.

5. RELATED WORK
We describe related work from the Gibbs sampling litera-

ture and the probabilistic databases literature.
Probabilistic graphical models [21] and factor graphs, in

particular, are popular frameworks for statistical modeling.
Gibbs sampling has been applied to a wide range of proba-
bilistic models and applications [3], e.g., risk models in ac-
tuarial science [4], conditional random fields for information
extraction [14], latent Dirichlet allocation for topic model-
ing [16,17], and Markov logic for text applications [12,28].

There are several recent general-purpose systems in which
a user specifies a factor graph model and the system per-
forms sampling-based inference. For example, Factorie [26]
allows a user to specify arbitrary factor functions in Java;
OpenBUGS [25] provides an interface for a user to spec-
ify arbitrary Bayes nets (which are also factor graphs) and
performs Gibbs sampling on top of them; PGibbs [15] per-
forms parallel Gibbs sampling over factor graphs on top of
GraphLab [24]. We hope the tradeoffs we describe here add



to this line of work for factor graphs that are larger than
main memory.

To deploy sophisticated statistical analysis over increas-
ingly data-intensive applications, there is a push to combine
factor graphs and databases [37,44]. However, Sen et al. [37]
did not consider Gibbs sampling. Most closely related to our
work is Wick et al. [44], who do perform blocked Gibbs sam-
pling and exploit a connection to materialized view mainte-
nance. However, their approach performs the core operation
in main memory. Hence, they did not consider the tradeoffs
that we discuss in this paper.

Gibbs sampling is often optimized for specific applications.
For example, a popular technique for implementing Gibbs
sampling for latent Dirichlet allocation [16, 23, 32, 38] is to
only maintain the sum of a set of Boolean random variables
instead of individual variable assignments. A more aggres-
sive parallelization strategy allows non-atomic updates to
the variables to increase throughput (possibly at the expense
of sample quality) [23,38]. Our prototype does allow this op-
timization, but it is orthogonal to our contributions (and we
do not use it in our experiments).

One line of work tries to scale up these main-memory sys-
tems to support analytics on data sets that are larger than
main memory. For example, the Ricardo system [11] inte-
grates R and Hadoop to process terabytes of data stored
on HDFS. However, Ricardo spawns R processes on Hadoop
worker nodes, and still assumes that statistical analytics hap-
pen in main memory on a single node. Our system, however,
studies how to scale up Gibbs sampling using both main
memory and secondary storage. Systems like Ricardo could
take advantage of our results to get higher scalability by im-
proving single-node scalability. The MCDB system [20] is
the seminal work of integrating sampling-based approaches
into a database. MCDB scales up the sampling process us-
ing an RDBMS. However, it assumes that the classic I/O
tradeoffs for an RDBMS work in the same way for sampling.
Our work revisits these classical tradeoffs, and we hope that
our study contributes to this line of work.

There is a rich literature on pushing probabilistic models
and algorithms into database systems [1, 5, 10, 19, 29, 31, 35,
37, 42, 44]. Factor graphs [41] are one of the most popular
and general formalisms [37, 42, 44]. There are alternative
representation frameworks to factor graphs. For example,
BayesStore [43] uses Bayes nets; Trio [1, 35], MayBMS [5],
and MystiQ [10] use c-tables [18]; MCDB [19] uses VG
functions; and Markov logic systems such as Tuffy [28] use
grounded-clause tables. We focus on factor graphs but spec-
ulate that our techniques could apply to other probabilistic
frameworks as well. PrDB [37] uses factor graphs and casts
SQL queries as inference problems in factor graphs. While
PrDB represents factor functions by enumerating all possi-
ble outcomes, we observe that such explicit enumeration is
inefficient for factors involving hundreds of variables (e.g., in
LDA), and so our system follows Factorie [26] and represents
factor functions as C++ functions. PrDB could adopt this
representation as well.

6. CONCLUSION
Motivated by problems in a variety of governmental and

industrial applications, we studied how to make a highly scal-
able Gibbs sampler. All other things being equal, a Gibbs
sampler that produces samples with higher throughput al-
lows us to obtain high quality more quickly. Thus, the cen-

tral technical challenge that we study is how to create a high-
throughput sampler. In contrast to previous approaches that
optimize sampling by proposing new algorithms, we exam-
ined whether or not traditional database optimization tech-
niques could be used to improve the core operation of Gibbs
sampling. In particular, we study the impact of a hand-
ful of classical data management tradeoffs on the through-
put of Gibbs sampling on factor graphs that are larger than
main memory. Our work articulates a handful of tradeoffs
that may be used to improve the throughput of such sys-
tems, including materialization, page-oriented layout, and
buffer-management tradeoffs. After analytically examining
the tradeoff space for each technique, we described novel
materialization strategies and a greedy page-oriented layout
strategy for factor graphs.

Our experimental study found that our techniques allowed
us to achieve up to two orders of magnitude improvement
in throughput over classical techniques. Using a classical
result due to Bélády, we implemented the optimal page-
replacement strategy, but found empirically that it offered
only modest improvement over traditional techniques. Over-
all, we saw that by optimizing for only these classical trade-
offs, we were able to construct a prototype system that
achieves competitive (and sometimes much better) through-
put than prior Gibbs sampling systems for factor graphs. As
our optimization techniques are orthogonal to other tech-
niques in the literature, we hope that our techniques will
contribute to a wide array of sampling systems that have
been developed in recent years.
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